scholarly journals A $θ-L$ Formulation-Based Finite Element Method for Solving Axisymmetric Solid-State Dewetting Problems

2021 ◽  
Vol 11 (2) ◽  
pp. 389-405
Author(s):  
Weijie Huang
Author(s):  
Y. J. Cho ◽  
J. W. Jang ◽  
G. H. Jang

We proposed a method to estimate a distribution of fatigue life of solid state drives (SSDs) due to thermal cycling excitation by using finite element method and Monte Carlo simulation. In the developed finite element model, we utilized the Anand model to represent the viscoplastic behavior of the solder balls, and we also utilized the Prony series to represent the viscoelastic behavior of the polymer material in underfill. We determined a fatigue life of the SSD by using the Morrow’s energy-based fatigue model. Finally, we determined a distribution of fatigue life considering the manufacturing tolerance of the design variables and the variation of material properties in the Monte Carlo simulation. Finite element analysis shows that the outermost solder ball at the corner of dynamic random access memory was the most vulnerable component under the thermal cycling excitation. We also show that temperature profile and diameter of solder ball affect dominantly the fatigue life of the SSD.


Author(s):  
Quan Zhao ◽  
Wei Jiang ◽  
Weizhu Bao

Abstract We propose an energy-stable parametric finite element method for simulating solid-state dewetting of thin films in two dimensions via a sharp-interface model, which is governed by surface diffusion and contact line (point) migration together with proper boundary conditions. By reformulating the relaxed contact angle condition into a Robin-type boundary condition and then treating it as a natural boundary condition, we obtain a new variational formulation for the problem, in which the interface curve and its contact points are evolved simultaneously. Then the variational problem is discretized in space by using piecewise linear elements. A full discretization is presented by adopting the backward Euler method in time, and the well-posedness and energy dissipation of the full discretization are established. The numerical method is semi-implicit (i.e., a linear system to be solved at each time step and thus efficient), unconditionally energy-stable with respect to the time step and second-order in space measured by a manifold distance between two curves. In addition, it demonstrates equal mesh distribution when the solution reaches its equilibrium, i.e., long-time dynamics. Numerical results are reported to show accuracy and efficiency as well as some good properties of the proposed numerical method.


2019 ◽  
Vol 2019 (0) ◽  
pp. 0163
Author(s):  
Akinari Ohashi ◽  
Manabu Kodama ◽  
Tomoki Yasuda ◽  
Satoshi Hori ◽  
Kota Suzuki ◽  
...  

2016 ◽  
Vol 701 ◽  
pp. 177-181 ◽  
Author(s):  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim ◽  
Wen Chiet Cheong

In this study, A356 aluminum alloy was heated up to semi-solid state and used as a billet for forward and backward extrusion. The workpiece will undergo solidification at the contact between billet and the tools when the material flowing through the die cavity during the semi-solid extrusion. The plasticity of A356 with 0.3wt% Y at semi-solid state was investigated by performing compression test. A numerical simulation code based on thermo-viscoplastic finite element method was developed to simulate the material flow and study the yttrium-modified A356 aluminum alloy under forward and backward extrusion. A minimum average punch strain rate is proposed for semi-solid extrusion.


1993 ◽  
Vol 115 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Y. Takahashi ◽  
T. Koguchi ◽  
K. Nishiguchi

The intimate contacting of rough surfaces in the solid state bonding of metals is modeled by a finite element method. The finite element method can be applied to the large deformation process of rate sensitive materials. The material used is an oxygen free copper. We treat only the case that the intimate contact is the rate controlling step in the solid state adhering process which can be realized under high vacuum and high temperature conditions for copper at least. The intimate contacting process is assumed to be produced by viscoplastic deformation after the initial local contact is made by instantaneous plastic deformation. The calculated results are in good agreement with the experimental ones. The model can predict the interfacial deformation during the solid state bonding carried out under high pressure conditions.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document