scholarly journals Selection of Tolerant of Some Citrus Hybrids F1 to Calcareous Stress and Identification Sexuall Individuals by SSR Marker

2022 ◽  
Vol 13 (01) ◽  
pp. 60-82
Author(s):  
Venus Ebraheem Hasan ◽  
Ali Issa Elkhateeb ◽  
Hassan Yosef Khojah
Fruits ◽  
2016 ◽  
Vol 71 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Alanna Rachel Andrade dos Santos ◽  
Everton Hilo de Souza ◽  
Michaella Fadini ◽  
Fernanda Vidigal Duarte Souza ◽  
Cristiane de Jesus Barbosa ◽  
...  
Keyword(s):  

2020 ◽  
Vol 30 (1) ◽  
pp. 9
Author(s):  
Panca Jarot Santoso ◽  
I Nyoman Pugeg Aryantha ◽  
Sony Suhandono ◽  
Adi Pancoro

<p>Penyakit mati-pohon disebabkan cendawan Pythiaceae khususnya Phytophtora palmivora, Pythium vexans, dan Pythium cucurbitacearum menjadi salah satu kendala utama dalam budidaya durian. Di antara upaya pengendaliannya adalah melalui pemuliaan dan seleksi tanaman tahan berbasis molekuler menggunakan marka SSR. Penelitian untuk mengidentifikasi lokus SSR yang berasosiasi dengan karakter tahan penyakit mati-pohon pada durian telah dilaksanakan di Laboratorium Genetika Tumbuhan SITH-ITB dari bulan April sampai dengan Desember 2014. Penelitian dilaksanakan secara bulked pseudo-segregant analysis dua pool DNA durian tahan dan rentan. Amplifikasi lokus SSR menggunakan 77 pasang primer mikrosatelit berlabel fluorescent. Produk amplifikasi dibaca menggunakan GeneMarker v.2.4.0., setiap puncak pancaran fluorescent yang memiliki nilai intensitas tinggi dipilih sebagai alel. Pembandingan panjang alel dilakukan di antara dua pool dan pembanding aksesi tahan. Lokus yang memiliki alel berbeda antara dua pool tetapi memiliki alel sama dengan pembanding dianggap sebagai marka yang berasosiasi dengan sifat tahan durian terhadap Pythiaceae. Hasil analisis ditemukan tiga lokus mDz03F10, mDz4B2, dan mDz3B1 dengan motif berturut-turut (GAA)3.A(GA)4, (GAGT)2ttGAGT, dan (TTTTATG)2(GCCC)2 teridentifikasi sebagai marka yang berasosiasi dengan karakter tahan Pythiaceae. Hasil analisis ini memerlukan satu langkah validasi untuk meyakinkan keterpautan marka dengan karakter target sebelum digunakan sebagai marka molekuler.</p><p><strong>Keywords</strong></p><p>Durian; SSR; BpSA; Tahan; <em>Pythiaceae</em></p><p><strong>Abstract</strong></p><p>Die-back disease caused by Pythiaceae especially Phytophtora palmivora, Pythium vexans, and Pythium cucurbitacearum is one of the obstacles in durian cultivation. An effort to control this disease is through breeding and selection of resistant plants based on molecular assays such as SSR markers. Research to identify SSR loci associated with durian die-back resistance was done at Plant Genetics Laboratory, SITH-ITB from April to December 2014. The research was conducted through bulked pseudo-segregant analysis of two DNA pools, resistance, and susceptible durians. Amplification of SSR loci was carried out by using 77 fluorescent labeled primers. Amplification products were analyzed using GeneMarker v.2.4.0. Fluorescent peak with high intensity was considered as a selected allele. Comparison of allele length was executed amongst two pools and resistance reference. A locus showed different allele between two pools, while it given the same allele to reference was considered as SSR marker associated with Phytiaceae resistance. The analysis were found three loci, mDz03F10, mDz4B2, and mDz3B1 with motif of (GAA)3.A(GA)4, (GAGT)2ttGAGT, and (TTTTATG)2(GCCC)2 recpectively identified as SSR markers associated to die-back resistance. This result, therefore, requires further validation to convince markers association to target traits before they are used as molecular markers.</p>


2020 ◽  
Vol 5 (1) ◽  
pp. 50-62
Author(s):  
Yuliana Galih Dyan Anggraheni ◽  
Enung Sri Mulyaningsih ◽  
Dody Priadi ◽  
Puspita Deswina ◽  
Yuli Sulistyowati ◽  
...  

SSR marker is one of the genetic markers widely applied in plant breeding programs. The application of molecular markers in plant breeding is meant to accelerate the selection of cross-progeny. The research aimed to identify the SSR primers polymorphism between the parent and control that linked to Al tolerance and verify the cross-progeny of five crosses. The result gained from 37 SSR primers used in this study showed that only nine primers are polymorphic. These nine polymorphic primers are RM257, RM214, RM247, RM205, RM490, RM262, RM569, RM271, and RM19. The application of polymorphic markers on five cross-progeny which have shown the same band pattern as the parents and tolerant control on the use of 9 SSR primers recorded as follows: RM257 2 lines, RM214 5 lines, RM247 5 lines, RM205 lines, RM490 13 lines, RM262 5 lines, RM569 7 lines, RM271 4 lines, and RM19 6 lines. The selected SSR primers linked to Al tolerance in this research can be used as a reference for molecular breeding strategies to develop new Al tolerance rice varieties in dryland conditions.


2008 ◽  
Vol 49 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Mirosław Tyrka ◽  
Dragan Perovic ◽  
Agnieszka Wardyńska ◽  
Frank Ordon

2020 ◽  
Vol 11 ◽  
pp. e3358
Author(s):  
Gabriela Da Costa ◽  
Maiara Curtolo ◽  
Thaís Cavichioli Magni ◽  
Mariângela Cristofani-Yaly

Citrus orchards have some limitations, such as the occurrence of phytosanitary problems. Alternaria brown spot (ABS) is caused by fungus Alternaria alternata, which affects several parts of the plant by producing a host-specific toxin, known as ACT. ABS is a limiting factor in orchards due to the susceptibility of most planted cultivars: ‘Murcott’ tangor and ‘Ponkan’ tangerine. The selection of varieties resistant/tolerant to the disease has economic importance. Therefore, the aim of this experiment was to evaluate the response to A. alternata inoculation in a population of ‘Murcott’ tangor vs ‘Pera’ sweet orange hybrids. Leaves of 2-3 centimeters in length of ‘Murcott’ tangor, ‘Pera’ sweet orange, ‘Ponkan’, ‘Dancy’, ‘Fremont’ tangerine and 198 hybrids were collected. For in vitro inoculation, monosporic A. alternata culture at concentration of 105 conidia mL-1 was used. Inoculated leaves were stored in humid chamber. After 24, 48 and 72 hours of inoculation, leaf lesions were evaluated following a diagrammatic scale. The results obtained showed that most hybrids from the crossing of ‘Murcott’ tangor vs ‘Pera’ sweet orange are susceptible to ABS. However, 44 are resistant and ten are tolerant. Among ABS-tolerant hybrids, some have phenotype similar to that of cultivated and commercialized hybrids.


1970 ◽  
Vol 37 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Shamima Islam Keka ◽  
Md Shamsuzzaman ◽  
Minhaz Uddin Pahloan ◽  
Sultana Pervin ◽  
Md Maksuder Rahman ◽  
...  

Mite infestation is one of the main factors restricting jute production in Bangladesh. The utilization of jute cultivars tolerant to mite attack can be one of the most economic strategies for expanding jute production. Among jute genotypes, C. olitorius O-7/95 has been reported to be most tolerant to mite attack. SSR or microsatellite markers for jute have been successfully used in distinguishing mite sensitive and tolerant jute varieties. To increase selection efficiency for mite tolerance we have used an F2 population of O-7/95 and O-72 (sensitive to mite attack) to map a number of these microsatellite markers and to determine their linkage with mite tolerant trait. A preliminary genetic linkage map based on 35 F2 populations, was constructed using software MAPMAKER/EXP (ver 3.0b). This map was based on ten SSR markers and a phenotypic marker (M-11) related to mite sensitivity. In this analysis mite resistance has been found to be linked with a SSR marker, M-66 at LOD threshold of 3. This marker has the potential of being useful in Marker Assisted Selection (MAS) in jute breeding programs for selection of lines resistant to mite. Key words: Jute, Mite tolerance, SSR marker, Linkage mapping doi:10.3329/bjb.v37i2.1725 Bangladesh J. Bot. 37(2): 161-171, 2008 (December)


2019 ◽  
Vol 42 ◽  
Author(s):  
Gian Domenico Iannetti ◽  
Giorgio Vallortigara

Abstract Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


1978 ◽  
Vol 48 ◽  
pp. 515-521
Author(s):  
W. Nicholson

SummaryA routine has been developed for the processing of the 5820 plates of the survey. The plates are measured on the automatic measuring machine, GALAXY, and the measures are subsequently processed by computer, to edit and then refer them to the SAO catalogue. A start has been made on measuring the plates, but the final selection of stars to be made is still a matter for discussion.


Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Sign in / Sign up

Export Citation Format

Share Document