scholarly journals Hardware Design for Low Power Integrated Sensor System

Author(s):  
Maher Rizkalla ◽  
An Feng ◽  
Michael Knieser ◽  
Francis Bowen ◽  
Paul Salama ◽  
...  
2019 ◽  
Vol 27 (12) ◽  
pp. 2949-2953
Author(s):  
Ruikuan Lu ◽  
A. K. M. Arifuzzman ◽  
Md Kamal Hossain ◽  
Steven Gardner ◽  
Sazia A. Eliza ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3976
Author(s):  
Sun Jin Kim ◽  
Myeong-Lok Seol ◽  
Byun-Young Chung ◽  
Dae-Sic Jang ◽  
Jonghwan Kim ◽  
...  

Self-powered wireless sensor systems have emerged as an important topic for condition monitoring in nuclear power plants. However, commercial wireless sensor systems still cannot be fully self-sustainable due to the high power consumption caused by excessive signal processing in a mini-electronic computing system. In this sense, it is essential not only to integrate the sensor system with energy-harvesting devices but also to develop simple data processing methods for low power schemes. In this paper, we report a patch-type vibration visualization (PVV) sensor system based on the triboelectric effect and a visualization technique for self-sustainable operation. The PVV sensor system composed of a polyethylene terephthalate (PET)/Al/LCD screen directly converts the triboelectric signal into an informative black pattern on the LCD screen without excessive signal processing, enabling extremely low power operation. In addition, a proposed image processing method reconverts the black patterns to frequency and acceleration values through a remote-control camera. With these simple signal-to-pattern conversion and pattern-to-data reconversion techniques, a vibration visualization sensor network has successfully been demonstrated.


2016 ◽  
Vol 108 (1) ◽  
pp. 011106 ◽  
Author(s):  
Lei Dong ◽  
Chunguang Li ◽  
Nancy P. Sanchez ◽  
Aleksander K. Gluszek ◽  
Robert J. Griffin ◽  
...  

2017 ◽  
Vol 10 (9) ◽  
pp. 3575-3588 ◽  
Author(s):  
Eben S. Cross ◽  
Leah R. Williams ◽  
David K. Lewis ◽  
Gregory R. Magoon ◽  
Timothy B. Onasch ◽  
...  

Abstract. The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO]  =  231 ± 116 ppb (spanning 84–1706 ppb), [NO]  =  6.1 ± 11.5 ppb (spanning 0–209 ppb), [NO2]  =  11.7 ± 8.3 ppb (spanning 0–71 ppb), and [O3]  =  23.2 ± 12.5 ppb (spanning 0–99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature  =  23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity  =  50.1 ± 15.3 %, spanning 9.8–79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.


Author(s):  
Berlian Al Kindhi ◽  
Josaphat Pramudijanto ◽  
Ilham Surya Pratama ◽  
Lucky Putri Rahayu ◽  
Fauzi I. Adhim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document