scholarly journals The Third-Order Viscoelastic Acoustic Model Enables an Ice-Detection System for a Smart Deicing of Wind-Turbine Blade Shells

2016 ◽  
Vol 04 (10) ◽  
pp. 1949-1976
Author(s):  
Eugen Mamontov ◽  
Viktor Berbyuk
2021 ◽  
Vol 263 (2) ◽  
pp. 4079-4087
Author(s):  
Murat Inalpolat ◽  
Caleb Traylor

Noise generated by turbulent boundary layer over the trailing edge of a wind turbine blade under various flow conditions is predicted and analyzed for structural health monitoring purposes. Wind turbine blade monitoring presents a challenge to wind farm operators, and an in-blade structural health monitoring system would significantly reduce O&M costs. Previous studies into structural health monitoring of blades have demonstrated the feasibility of designing a passive detection system based on monitoring the flow-generated acoustic spectra. A beneficial next step is identifying the robustness of such a system to wind turbine blades under different flow conditions. To examine this, a range of free stream air velocities from 5 m/s to 20 m/s and a range of rotor speeds from 5 rpm to 20 rpm are used in a reduced-order model of the flow-generated sound in the trailing edge turbulent boundary layer. The equivalent lumped acoustics sources are predicted based on the turbulent flow simulations, and acoustic spectra are calculated using acoustic ray tracing. Each case is evaluated based on the changes detected when damage is present. These results can be used to identify wind farms that would most benefit from this monitoring system to increase efficiency in deployment of turbines.


2019 ◽  
Vol 132 ◽  
pp. 1034-1048 ◽  
Author(s):  
Alfredo Arcos Jiménez ◽  
Fausto Pedro García Márquez ◽  
Victoria Borja Moraleda ◽  
Carlos Quiterio Gómez Muñoz

2019 ◽  
Vol 118 ◽  
pp. 02041 ◽  
Author(s):  
Ningning Zhang ◽  
Chengzhi Lu ◽  
Anmin Wang

Currently in the process of wind farm inspection, wind turbine blade appearance inspection mainly adopts the telescope or high-definition cameras, low detection efficiency, labor intensity and the precision is limited, in order to solve this problem, a kind of wind turbine blades defect recognition system based on image array is proposed. Through the joint of array camera and image processing server, the functions of the image acquisition, processing, and defect recognition and detection results output are implemented. The software of artificial intelligence deep learning based on neural network algorithm is used to identify the defects of blade image, and output quality analysis report, to realize automatic detection of wind turbine blade surface defect. The field measurement results show that the system greatly improves the efficiency and accuracy of wind turbine blade defect detection.


Author(s):  
Gwochung Tsai ◽  
Yita Wang ◽  
Yuhchung Hu ◽  
Jaching Jiang

Author(s):  
Aldemir Ap Cavalini Jr ◽  
João Marcelo Vedovoto ◽  
Renata Rocha

Sign in / Sign up

Export Citation Format

Share Document