scholarly journals Adipose Derived Stem Cells and Growth Factors Applied on Hair Transplantation. Follow-Up of Clinical Outcome

2014 ◽  
Vol 04 (04) ◽  
pp. 268-274 ◽  
Author(s):  
Federica Zanzottera ◽  
Emilio Lavezzari ◽  
Letizia Trovato ◽  
Alessandro Icardi ◽  
Antonio Graziano
2017 ◽  
Vol 6 (7) ◽  
pp. 1576-1582 ◽  
Author(s):  
Tuomo Thesleff ◽  
Kai Lehtimäki ◽  
Tero Niskakangas ◽  
Sanna Huovinen ◽  
Bettina Mannerström ◽  
...  

2013 ◽  
Vol 36 (1) ◽  
pp. 73-73
Author(s):  
Katrin Froelich ◽  
Lydia E. Setiawan ◽  
Antje Technau ◽  
Mario Ramos Tirado ◽  
Stephan Hackenberg ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Maravillas Mellado-López ◽  
Richard J. Griffeth ◽  
Jose Meseguer-Ripolles ◽  
Ramón Cugat ◽  
Montserrat García ◽  
...  

Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Alice E. Mortimer ◽  
Alessandro Faroni ◽  
Mahmut A. Kilic ◽  
Adam J. Reid

Differentiating human adipose-derived stem cells (ASCs) towards Schwann cells produces an unstable phenotype when stimulating factors are withdrawn. Here, we set out to examine the role of glial growth factor 2 (GGF-2) in the maintenance of Schwann-like cells. Following ASC differentiation to Schwann-like cells, stimulating factors were withdrawn such that cells either remained in media supplemented with all stimulating factors, GGF-2 alone, or underwent complete withdrawal of all factors. Furthermore, each stimulating factor was also removed from the growth medium individually. At 72 hours, gene (qRT-PCR) and protein (ELISA) expression of key Schwann cell factors were quantified and cell morphology was analysed. Cells treated with GGF-2 alone reverted to a stem cell morphology and did not stimulate the production of brain-derived neurotrophic factor (BDNF), regardless of the concentration of GGF-2 in the growth medium. However, GGF-2 alone increased the expression of Krox20, the main transcription factor involved in myelination, relative to those cells treated with all stimulating factors. Cells lacking fibroblast growth factor were unable to maintain a Schwann-like morphology, and those lacking forskolin exhibited a downregulation in BDNF production. Therefore, it is likely that the synergistic action of multiple growth factors is required to maintain Schwann-like phenotype in differentiated ASCs.


2012 ◽  
Vol 35 (12) ◽  
pp. 1047-1060 ◽  
Author(s):  
Katrin Froelich ◽  
Lydia E. Setiawan ◽  
Antje Technau ◽  
Mario Ramos Tirado ◽  
Stephan Hackenberg ◽  
...  

Introduction Chondrogenic differentiation of adipose-derived stem cells (ASCs) has proven to be feasible. To compensate for laryngeal palsy or cartilage defects after surgery or trauma using tissue engineering, a formable and stable scaffold material is mandatory. Methods ASCs were seeded in fibrin-polyurethane scaffolds and cultured in chondrogenic differentiation medium adding the growth factors TGF-□1, TGF-□3, and BMP-2 for up to 35 days. Results Histological examination showed acid glycosaminoglycans in the extracellular matrix in all groups. Immunofluorescence presented positive staining for collagen II, aggrecan, and SOX-9 in the TGF-□1–, TGF-□3–, and BMP-2-group. With Real-time PCR analyses, chondrogenic differentiation became apparent by the expression of the specific genes COL2A1 (collagen II), AGC 1 (aggrecan), and SOX-9, whereas collagen II expression was low in all groups compared to bone marrow-derived stem cells (BMSC) due to reduced chondrogenic ability. Conclusions These findings demonstrate the general ability of ASCs to differentiate into matrix-producing chondrocytes in fibrin-polyurethane scaffolds. However, further experiments are necessary to enhance this chondrogenic potential of ASCs seeded in fibrin-polyurethane scaffolds in order to produce a suitable regeneration method for treating cartilage defects or an implantable medialization material for vocal cord palsy.


2018 ◽  
Vol 26 (3) ◽  
pp. 230949901879953 ◽  
Author(s):  
Ofir Uri ◽  
Eyal Behrbalk ◽  
Yoram Folman

Background: Deficient osteogenic capacity of bone marrow stem cells plays a critical role in the pathophysiology of osteoporosis. Adipose-derived stem cells (ADSCs) have emerged as a promising source of skeletal progenitor cells. The capacity of ADSCs to undergo osteogenic differentiation and induce mineralized tissue formation may be beneficial in the treatment of osteoporosis. We question whether administration of autologous ADSCs into the proximal femur of osteoporotic rats will induce osteogenesis and enhance bone quality and strength. Materials and Methods: Thirty ovariectomized female rats were randomly assigned to one of the two treatment groups: (1) percutanous implantation of autogenous ADSCs-seeded scaffold into the proximal femur and (2) percutanous implantation of non-seeded scaffold. The contralateral untreated femur served as control. The effect of treatment on bone characteristics was assessed at 12-week follow-up by micro-computed tomography analysis, mechanical testing, and histological analysis. Results: The mean cortical thickness, total bone volume density, and bone load to failure in femora injected with autologous ADSCs-seeded scaffold was significantly higher compared to femora injected with non-seeded scaffold and compared to the untreated control femora ( p < 0.01). Histological examination of the injected specimens revealed complete osseo-integration of the scaffolds with direct conversion of the ADSCs into osteoblasts and no inflammatory response. Conclusions: Autogenous ADSCs implantation into the proximal femur of rats with ovariectomy-related osteoporosis promoted bone regeneration and increased bone strength at short-term follow-up. These findings highlight the potential benefit of autogenous ADSCs in the treatment of osteoporosis. Level of Evidence: Level I, randomized controlled trial, animal study.


Author(s):  
Monia Savi ◽  
Leonardo Bocchi ◽  
Emanuela Fiumana ◽  
Caterina Frati ◽  
Francesca Bonafé ◽  
...  

We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs), activation of resident cardiac stem cells via growth factors (GFs) [hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1):GFs] or both, are improved by pharmacologically active microcarriers (PAMs) interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs) were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.


Sign in / Sign up

Export Citation Format

Share Document