scholarly journals Homogeneous Liquid-Liquid Extraction (HoLLE) of Palladium in Real Plating Wastewater for Recovery

2016 ◽  
Vol 07 (02) ◽  
pp. 277-286 ◽  
Author(s):  
Takeshi Kato ◽  
Shukuro Igarashi ◽  
Osamu Ohno ◽  
Shotaro Saito ◽  
Ryo Ando
2017 ◽  
Vol 7 (4) ◽  
pp. 44 ◽  
Author(s):  
Takeshi Kato ◽  
Shotaro Saito ◽  
Shigekatsu Oshite ◽  
Shukuro Igarashi

A powerful technique for the concentration of rhodium (Rh) in plating wastewater was developed. The technique entails complexing Rh with 1-(2-pyridylazo)-2-naphthol (PAN) followed by homogeneous liquid–liquid extraction (HoLLE) with Zonyl FSA. The optimum HoLLE conditions were determined as follows: [ethanol]T = 30.0 vol.%, pH = 4.00, and Rh:PAN = 1:5. Under these optimum conditions, 88.1% of Rh was extracted into the sedimented liquid phase. After phase separation, the volume ratio [aqueous phase (Va) /sedimented liquid phase (Vs)] of Va and Vs was 1000 (50 mL → 0.050 mL). We then applied the new method to wastewater generated by the plating industry. The phase separation was satisfactorily achieved when the volume was scaled up to 1000 mL of the actual wastewater; 84.7% of Rh was extracted into the sedimented liquid phase. After phase separation, Va/Vs was 588 (1000 mL - 1.70 mL).


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2277
Author(s):  
Piotr M. Kuś ◽  
Igor Jerković

Recently, we proposed a new sample preparation method involving reduced solvent and sample usage, based on dehydration homogeneous liquid–liquid extraction (DHLLE) for the screening of volatiles and semi-volatiles from honey. In the present research, the method was applied to a wide range of honeys (21 different representative unifloral samples) to determine its suitability for detecting characteristic honey compounds from different chemical classes. GC-FID/MS disclosed 130 compounds from different structural and chemical groups. The DHLLE method allowed the extraction and identification of a wide range of previously reported specific and nonspecific marker compounds belonging to different chemical groups (including monoterpenes, norisoprenoids, benzene derivatives, or nitrogen compounds). For example, DHLLE allowed the detection of cornflower honey chemical markers: 3-oxo-retro-α-ionols, 3,4-dihydro-3-oxoedulan, phenyllactic acid; coffee honey markers: theobromine and caffeine; linden honey markers: 4-isopropenylcyclohexa-1,3-diene-1-carboxylic acid and 4-(2-hydroxy-2-propanyl)cyclohexa-1,3-diene-1-carboxylic acid, as well as furan derivatives from buckwheat honey. The obtained results were comparable with the previously reported data on markers of various honey varieties. Considering the application of much lower volumes of very common reagents, DHLLE may provide economical and ecological advantages as an alternative sample preparation method for routine purposes.


2009 ◽  
Vol 6 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
Mohammad Reza Jamali ◽  
Yaghoub Assadi ◽  
Reyhaneh Rahnama Kozani ◽  
Farzaneh Shemirani

A simple and effective homogeneous liquid-liquid extraction method for selective separation, preconcentration and spectrophotometric determination of palladium(II) ion was developed by using a ternary component system (water / tetrabutylammonium ion (TBA+) / chloroform). The phase separation phenomenon occurred by an ion–pair formation of TBA+and perchlorate ion. Thio-Michler’s ketone (TMK), 4, 4ˊ-bis (dimethylamino) thiobenzophenone, was used as a complexing agent. After optimization of complexation and extraction conditions ([TMK]=5.0x10-2mol L-1, [TBA+] = 2.0×10-2mol L-1, [CHCl3] = 60.0 µL, [ClO4-] = 2.5×10-2mol L-1and pH= 3.0), a preconcentration factor 10 was obtained for 10 mL of sample. The analytical curve was linear in the range of 2-100 ng mL-1and the limit of detection was 0.4 ng mL-1. The relative standard deviation was 3.2% (n=10). Accuracy and application of the method was estimated by using test samples of natural and synthetic water spiked with different amounts of palladium(II) ion. The method is very simple and inexpensive.


Sign in / Sign up

Export Citation Format

Share Document