scholarly journals Corrosion Behavior of Tin-Plated Carbon Steel and Aluminum in NaCl Solutions Using Electrochemical Impedance Spectroscopy

2008 ◽  
Vol 07 (04) ◽  
pp. 331-346 ◽  
Author(s):  
B.O. Oni ◽  
N.O. Egiebor ◽  
N.J. Ekekwe ◽  
A. Chuku
RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 80275-80285 ◽  
Author(s):  
Bhavana Rikhari ◽  
S. Pugal Mani ◽  
N. Rajendran

In the present work, dynamic electrochemical impedance spectroscopy (DEIS) was used to investigate the corrosion behavior of polypyrrole (PPy)-coated titanium (Ti) in simulated body fluid (SBF) solution.


2018 ◽  
Vol 42 (17) ◽  
pp. 14394-14409 ◽  
Author(s):  
S. Pugal Mani ◽  
Bhavana Rikhari ◽  
Perumal Agilan ◽  
N. Rajendran

In the present investigation, the corrosion behavior of TiN-coated 316L SS was evaluated for use in a proton-exchange membrane fuel cell using dynamic electrochemical impedance spectroscopy (DEIS).


2011 ◽  
Vol 695 ◽  
pp. 425-428
Author(s):  
Duo Wang ◽  
De Ning Zou ◽  
Chang Bin Tang ◽  
Kun Wu ◽  
Huan Liu

Supermartensitic stainless steel grades are widely used in oil and gas industries to substitute duplex and super duplex stainless steels these years. In this paper the corrosion behavior of supermartensitic stainless steels with different chemical compositions, S-165 and HP, was investigated in Cl-environment. All the samples were treated by quenching at 1000 °C followed by tempering at 630 °C for 2h. After heat treatment, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were determined on both kinds of samples. Polarization curves shows that the metastable pitting nucleuses were formed in passive area and the Cr content is the most important factor leading to the differences of pitting potential. The potentiodynamic polarization curves were conducted at various NaCl contents (5000, 15000 and 35000 ppm) and emphasized the need to account for the Cl-sensitivity of samples under corrosion environment. The results show that, the pitting potential decrease with the increase of chloride contents. The behavior of passive film was analyzed by electrochemical impedance spectroscopy.


2013 ◽  
Vol 652-654 ◽  
pp. 1432-1435
Author(s):  
Qian Hu ◽  
Jing Liu ◽  
Jie Zhang ◽  
Feng Huang ◽  
Xing Peng Guo

The crevice corrosion behaviors of X52 carbon steel in two typical Cl--containing solutions were investigated by electrochemical noise and electrochemical impedance spectroscopy. Results show that oxygen concentration difference leads to the coupled current in NaCl + NaHCO3 solution while HAc concentration difference causes the coupled current in NaCl solution saturated with CO2 in the presence of HAc. There exists an apparent incubation stage during the crevice corrosion process of X52 carbon steel in the former. However, no obvious incubation period of crevice corrosion can be observed in the latter. Micrography shows that the crevice corrosion occurs indeed and the corrosion inside the crevice is not uniform.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

AbstractThe present study aims at deposition of zinc phosphate coatings on low carbon steel with incorporated nano- TiO2 particles by chemical phosphating method. The coated low carbon steel samples were assessed in corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarization techniques (Tafel) in 3.5% NaCl solution. Morphology and chemical composition of the coatings were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy in order to observe growth of coating. Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano- TiO2 in the phosphating bath. Corrosion rate of nano-TiO2 chemical phosphate coated samples was found to be 3.5 milli inches per year which was 3 times less than the normal phosphate-coated sample (8 mpy). Electrochemical impedance spectroscopy studies reveal reduction of porosity of nano-TiO2 phosphate coated samples. It was found that nano-TiO2 particles in the phosphating solution yielded uniform phosphate coatings of higher coating weight, fewer defects and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


2012 ◽  
Vol 189 ◽  
pp. 36-39
Author(s):  
Hai Jiao Yang ◽  
Sheng Tao Zhang ◽  
Lei Zhang

The corrosion behavior of copper in halide solutions was investigated by cyclic voltammetry, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). On this basis, the mechanism of electrochemical corrosion behavior of Cu in halide solutions has been analyzed. The study explores the corrosive effect of the halide ions on copper materials and provides a theoretical basis for the inhibition of halide ions on the corrosion of copper materials.


Sign in / Sign up

Export Citation Format

Share Document