scholarly journals Pore Characteristics of Vitrain and Durain in Low Rank Coal Area

2017 ◽  
Vol 05 (11) ◽  
pp. 10-20 ◽  
Author(s):  
Dongmin Ma ◽  
Qian Li ◽  
Qian He ◽  
Chuantao Wang
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Teng Li

The pore characteristics of the low-rank coal are different from medium- and high-rank coals. The low-temperature N2 adsorption (LP-N2A) measurements with a single low-rank coal were launched, and the dynamic change of pore structures under various pretreatment temperatures from 120°C to 300°C was studied. The isothermal curves of the DFS coal sample feature IV type, the hysteresis loops convert from H4 type to H2 type, and the hysteresis loops tend to be closed with the increased pretreatment temperatures. The mesopores are dominant in the DFS coal. The dynamic of pore volume (PV) and pore specific surface area (SSA) features the three-step-style change with the cut-off temperature points at 150°C and 240°C, and this has a relationship with the loss of the moisture and volatiles in the DFS coal sample. The pores with an aperture below 10 nm are the dominant mesopores in the DFS coal, and the mesopore volume features bimodal pattern distribution with a higher left peak of approximately 1.7 nm and a lower right peak of approximately 3-5 nm, and the right peak continuously right shift with the increase pretreatment temperatures. The total mesopore volume decreases with the upgrading temperatures, while the ratio of pores greater than 5 nm increases. Finally, the mesopore evolution model with the increased pretreatment temperatures was summarized.


2018 ◽  
Author(s):  
Jayeeta Chakraborty ◽  
◽  
Robert B. Finkelman ◽  
William H. Orem ◽  
Matthew S. Varonka ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


Energy ◽  
2021 ◽  
pp. 121505
Author(s):  
Muflih A. Adnan ◽  
Arif Hidayat ◽  
Mohammad M. Hossain ◽  
Oki Muraza
Keyword(s):  
Low Rank ◽  

2020 ◽  
Vol 116 ◽  
pp. 91-99
Author(s):  
Ruidong Zhao ◽  
Jianguang Qin ◽  
Tianju Chen ◽  
Leilei Wang ◽  
Jinhu Wu

Sign in / Sign up

Export Citation Format

Share Document