scholarly journals Roundabout Performance Analysis Using Connected Vehicle Data

2022 ◽  
Vol 12 (01) ◽  
pp. 42-58
Author(s):  
Enrique Saldivar-Carranza ◽  
Jijo K. Mathew ◽  
Howell Li ◽  
Darcy M. Bullock
2018 ◽  
Vol 20 (6) ◽  
pp. 513-527
Author(s):  
Alexander M. Soley ◽  
Joshua E. Siegel ◽  
Dajiang Suo ◽  
Sanjay E. Sarma

Purpose The purpose of this paper is to develop a model to estimate the value of information generated by and stored within vehicles to help people, businesses and researchers. Design/methodology/approach The authors provide a taxonomy for data within connected vehicles, as well as for actors that value such data. The authors create a monetary value model for different data generation scenarios from the perspective of multiple actors. Findings Actors value data differently depending on whether the information is kept within the vehicle or on peripheral devices. The model shows the US connected vehicle data market is worth between US$11.6bn and US$92.6bn. Research limitations/implications This model estimates the value of vehicle data, but a lack of academic references for individual inputs makes finding reliable inputs difficult. The model performance is limited by the accuracy of the authors’ assumptions. Practical implications The proposed model demonstrates that connected vehicle data has higher value than people and companies are aware of, and therefore we must secure these data and establish comprehensive rules pertaining to data ownership and stewardship. Social implications Estimating the value of data of vehicle data will help companies understand the importance of responsible data stewardship, as well as drive individuals to become more responsible digital citizens. Originality/value This is the first paper to propose a model for computing the monetary value of connected vehicle data, as well as the first paper to provide an estimate of this value.


Author(s):  
Michelle M. Mekker ◽  
Yun-Jou Lin ◽  
Magdy K. I. Elbahnasawy ◽  
Tamer S. A. Shamseldin ◽  
Howell Li ◽  
...  

Extensive literature exists regarding recommendations for lane widths, merging tapers, and work zone geometry to provide safe and efficient traffic operations. However, it is often infeasible or unsafe for inspectors to check these geometric features in a freeway work zone. This paper discusses the integration of LiDAR (Light Detection And Ranging)-generated geometric data with connected vehicle speed data to evaluate the impact of work zone geometry on traffic operations. Connected vehicle speed data can be used at both a system-wide (statewide) or segment-level view to identify periods of congestion and queueing. Examples of regional trends, localized incidents, and recurring bottlenecks are shown in the data in this paper. A LiDAR-mounted vehicle was deployed to a variety of work zones where recurring bottlenecks were identified to collect geometric data. In total, 350 directional miles were covered, resulting in approximately 360 GB of data. Two case studies, where geometric anomalies were identified, are discussed in this paper: a short segment with a narrow lane width of 10–10.5 feet and a merging taper that was about 200 feet shorter than recommended by the Manual on Uniform Traffic Control Devices. In both case studies, these work zone features did not conform to project specifications but were difficult to assess safely by an inspector in the field because of the high volume of traffic. The paper concludes by recommending the use of connected vehicle data to systematically identify work zones with recurring congestion and the use of LiDAR to assess work zone geometrics.


2019 ◽  
Vol 07 (10) ◽  
pp. 82-93
Author(s):  
Kachane Sonklin ◽  
Charles Wang ◽  
Dhammika Jayalath ◽  
Yanming Feng

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Raj Bridgelall ◽  
Pan Lu ◽  
Denver D. Tolliver ◽  
Tai Xu

On-demand shared mobility services such as Uber and microtransit are steadily penetrating the worldwide market for traditional dispatched taxi services. Hence, taxi companies are seeking ways to compete. This study mined large-scale mobility data from connected taxis to discover beneficial patterns that may inform strategies to improve dispatch taxi business. It is not practical to manually clean and filter large-scale mobility data that contains GPS information. Therefore, this research contributes and demonstrates an automated method of data cleaning and filtering that is suitable for such types of datasets. The cleaning method defines three filter variables and applies a layered statistical filtering technique to eliminate outlier records that do not contribute to distributions that match expected theoretical distributions of the variables. Chi-squared statistical tests evaluate the quality of the cleaned data by comparing the distribution of the three variables with their expected distributions. The overall cleaning method removed approximately 5% of the data, which consisted of errors that were obvious and others that were poor quality outliers. Subsequently, mining the cleaned data revealed that trip production in Dubai peaks for the case when only the same two drivers operate the same taxi. This finding would not have been possible without access to proprietary data that contains unique identifiers for both drivers and taxis. Datasets that identify individual drivers are not publicly available.


Author(s):  
Yuan Sun ◽  
Hao Xu ◽  
Jianqing Wu ◽  
Jianying Zheng ◽  
Kurt M. Dietrich

High-resolution vehicle data including location, speed, and direction is significant for new transportation systems, such as connected-vehicle applications, micro-level traffic performance evaluation, and adaptive traffic control. This research developed a data processing procedure for detection and tracking of multi-lane multi-vehicle trajectories with a roadside light detection and ranging (LiDAR) sensor. Different from existing methods for vehicle onboard sensing systems, this procedure was developed specifically to extract high-resolution vehicle trajectories from roadside LiDAR sensors. This procedure includes preprocessing of the raw data, statistical outlier removal, a Least Median of Squares based ground estimation method to accurately remove the ground points, vehicle data clouds clustering, a principle component-based oriented bounding box method to estimate the location of the vehicle, and a geometrically-based tracking algorithm. The developed procedure has been applied to a two-way-stop-sign intersection and an arterial road in Reno, Nevada. The data extraction procedure has been validated by comparing tracking results and speeds logged from a testing vehicle through the on-board diagnostics interface. This data processing procedure could be applied to extract high-resolution trajectories of connected and unconnected vehicles for connected-vehicle applications, and the data will be valuable to practices in traffic safety, traffic mobility, and fuel efficiency estimation.


Sign in / Sign up

Export Citation Format

Share Document