scholarly journals Seasonal Variation and Removal of Organic Pollutants in Wastewater Using Low-Cost Treatment Technologies in Tamale Metropolis, Ghana

2021 ◽  
Vol 13 (04) ◽  
pp. 271-282
Author(s):  
Felix K. Abagale
2020 ◽  
Author(s):  
Regina Filemon Irunde ◽  
◽  
Julian Ijumulana ◽  
Julian Ijumulana ◽  
Julian Ijumulana ◽  
...  

Author(s):  
Dana A. Da’ana ◽  
Nabil Zouari ◽  
Mohammad Y. Ashfaq ◽  
Mohammed Abu-Dieyeh ◽  
Majeda Khraisheh ◽  
...  

Abstract Purpose of Review This paper reviews various low-cost treatment techniques such as adsorption, permeable reactive barrier, and biological techniques for the simultaneous removal of chemical and microbial contaminants from groundwater and discusses treatment mechanisms of different treatment techniques. This paper also discusses the challenges of groundwater treatment, how to choose the appropriate treatment technique, and cost analysis of groundwater treatment. Recent Findings Various treatment technologies have been used for the treatment of groundwater: physical, chemical, and biological technologies with different success rates. In the literature, various adsorbents have been successfully synthesized from low-cost and environmentally friendly materials. Adsorption is considered an efficient treatment technique for the removal of both toxic elements and pathogens by utilizing different adsorbents. For example, the nanostructures of MgO with a BET surface area of up to 171 m2/g obtained a very high adsorption capacity of 29,131 mg/g for fluoride ions in water, while the incorporation of iron in activated carbon has improved its adsorption capacity to 51.3 mg/g for arsenic. Moreover, certain adsorbents have shown the capability to remove 99% of the rotavirus and adenovirus from groundwater. Summary Groundwater resources are contaminated with toxic metals and pathogens. Therefore, water treatment technologies should be evaluated for their efficiency to remove such contaminants. Determination of the most cost-effective and efficient treatment technique is not an easy task and requires the understanding of various aspects such as the contaminants present in water, the reuse options considered, and cost analysis of the treatment technique.


2021 ◽  
Author(s):  
Poslet Shumbula ◽  
Collet Maswanganyi ◽  
Ndivhuwo Shumbula

Persistent organic pollutants (POPs), which are synthetic organic chemical compounds, either intentionally or unintentionally produced, have widely aroused public concern in recent years. These chemicals are toxic and major environmental concern due to their persistence, long range transportability, bioaccumulation and potentially adverse effects on living organisms. Uncontrolled inputs combined with poor environmental management often result in elevated levels of persistent organic pollutants in affected estuaries. Since the Stockholm Convention on POPs was adopted, different techniques have been extensively developed. A major focus revealed the need for low cost methods that can be implemented easily in developing countries such as electrochemical techniques. Persistent organic pollutants are known to be resistant to conventional treatment methods such as flocculation, coagulation, filtration and oxidant chemical treatment. However, various advanced wastewater treatment technologies such as, activated carbon adsorption, biodegradation using membrane bioreactor and advanced oxidation processes (AOPs) have been applied in the treatment of POPs.


2016 ◽  
Vol 42 (4) ◽  
pp. 12-21 ◽  
Author(s):  
Harshad Lade ◽  
Avinash Kadam ◽  
Diby Paul ◽  
Sanjay Govindwar

AbstractIn the present study, the enrichment and isolation of textile effluent decolorizing bacteria were carried out in wheat bran (WB) medium. The isolated bacterium Providencia rettgeri strain HSL1 was then tested for decolorization of textile effluent in consortium with a dyestuff degrading fungus Aspergillus ochraceus NCIM 1146. Decolorization study suggests that A. ochraceus NCIM 1146 and P. rettgeri strain HSL1 alone re moves only 6 and 32% of textile effluent American Dye Manufacturing Institute respectively in 30 h at 30 ±0.2°C of microaerophilic incubation, while the fungal-bacterial consortium does 92% ADMI removal within the same time period. The fungal-bacterial consortium exhibited enhanced decolorization rate due to the induction in activities of catalytic enzymes laccase (196%), lignin peroxidase (77%), azoreductase (80%) and NADH-DCIP reductase (84%). The HPLC analysis confirmed the biodegradation of textile effluent into various metabolites. Detoxification studies of textile effluent before and after treatment with fungal-bacterial consortium revealed reduced toxicity of degradation metabolites. The efficient degradation and detoxification by fungal-bacterial consortium pre-grown in agricultural based medium thus suggest a promising approach in designing low-cost treatment technologies for textile effluent.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10300-10308
Author(s):  
Hui Feng ◽  
Siqi Feng ◽  
Niu Tang ◽  
Songbai Zhang ◽  
Xiangyang Zhang ◽  
...  

New idea for the low cost synthesis of high performance photocatalysts for the photodegradation of organic pollutants in aqueous solution.


Author(s):  
Dennis P. Watson ◽  
Monte D. Staton ◽  
Michael L. Dennis ◽  
Christine E. Grella ◽  
Christy K. Scott

Abstract Background Brief treatment (BT) can be an effective, short-term, and low-cost treatment option for many people who misuse alcohol and drugs. However, inconsistent implementation is suggested to result in BT that often looks and potentially costs similar to regular outpatient care. Prior research is also rife with inconsistent operationalizations regarding the measurement of BT received by patients. As such, there is a need to more explicitly identify and document variations in BT practice. Methods A qualitative investigation of BT in four Federally Qualified Health Centers (FQHC) was undertaken as a sub study of a larger clinical trial. Researchers interviewed 12 staff (administrators and clinicians) involved in BT oversight, referral, or delivery within the four FQHCs. Data were analyzed following an inductive approach guided by the primary research questions. Results Findings demonstrate considerable differences in how BT was conceptualized and implemented within the FQHCs. This included a variety of ways in which BT was presented and described to patients that likely impacts how they perceive the BT they receive, including potentially not understanding they received substance use disorder treatment at all. Conclusions The findings raise questions regarding the validity of prior research, demonstrating more objective definitions of BT and fidelity checklists are needed to ensure integrity of results. Future work in this area should seek to understand BT as practiced among a larger sample of providers and the direct experiences and perspectives of patients. There is also a need for more consistent implementation, quality assurance guidelines, and standardized stage of change assessments to aid practitioners.


Nanoscale ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 4771-4778 ◽  
Author(s):  
Yanbiao Liu ◽  
Fang Li ◽  
Qin Xia ◽  
Jiawei Wu ◽  
Jianshe Liu ◽  
...  

We developed a low-cost method to achieve efficient organic pollutants degradation by incorporating conductive nanomaterials to assist electro-oxidation, leading to an efficient conductive nano-sponge filtration device.


2018 ◽  
Vol 8 (4) ◽  
pp. 777-784 ◽  
Author(s):  
J. Kearns ◽  
A. Krupp ◽  
E. Diek ◽  
S. Mitchell ◽  
S. Dossi ◽  
...  

Abstract Affordable, locally managed, decentralized treatment technologies are needed to protect health in resource-poor regions where communities consume groundwater containing elevated levels of fluoride (F). Bonechar is a promising low-cost sorbent for F that can be produced using local materials and simple pyrolysis technology. However, the sorption capacity of bonechar is low relative to the quantities of F that must be removed to meet health criteria (typically several mg/L), especially at pH typical of groundwaters containing high levels of geogenic F. This necessitates large bonechar contactors and/or frequent sorbent replacement, which could be prohibitively costly in materials and labor. One strategy for improving the feasibility of bonechar water treatment is to utilize lead-lag series or staged parallel configurations of two or more contactors. This study used column testing to quantify potential benefits to bonechar use rate, replacement frequency, and long-run average F concentration in treated water of lead-lag series and staged parallel operational modes compared with single contactor mode. Lead-lag series operation exhibited the largest reduction in bonechar use rate (46% reduction over single contactor mode compared with 29% reduction for staged parallel) and lowest long-run average F levels when treating central Mexican groundwater at pH 8.2 containing 8.5 mg/L F.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 137-142 ◽  
Author(s):  
S. Kantawanichkul ◽  
P. Neamkam ◽  
R.B.E. Shutes

Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater . This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2.d and 11 g/m2.d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2.d or dry biomass production was 2.8 kg/m2 over 100 days.


Sign in / Sign up

Export Citation Format

Share Document