scholarly journals Effects of Wood Ash and Waste Glass Powder on Properties of Concrete in Terms of Workability and Compressive Strength in Jaresh City

2017 ◽  
Vol 07 (03) ◽  
pp. 423-431 ◽  
Author(s):  
Yasser I. O. Yahia ◽  
Hesham Alsharie ◽  
Manal O. Suliman ◽  
Talal Masoud
2013 ◽  
Vol 871 ◽  
pp. 171-178
Author(s):  
Qing Qiu Kong ◽  
Guo Jun Ke ◽  
Dan Wang

The effect of hydrothermal activation indifferent temperature and pressure conditions on the pozzolanic activity of waste glass powder was discussed. The waste glass powder was treated at 108°C, 0.15MPa, 116°C, 0.18MPa and 121°C, 0.2MPa for 2h in an autoclave respectively after milling to 4215cm2/g. Mortar was made with untreated and hydrothermal activated waste glass power replacement of cement at 20% respectively, then tested for compressive strength at 3, 7, 14 , 28 and 90 days. Results showed that compressive strength of cement mortar had varying degrees of decline when replacing cement with untreated waste glass powder, comparing to the control one. Decline amplitude was large at early age and small at late age. Activity of waste glass powder was significantly improved after hydrothermal treatment. Compressive strength of mortar improved as temperature and pressure elevated, obtaining optimal strength at 121°C, 0.2MPa. Compressive strength of mortar with hydrothermal activated glass powder was higher than that with untreated glass powder at all age with 20% cement replacement. Compressive strength increased 5.3% ~ 13.6% at 3 d, 6.8%~9.7% at 28 d, 9.7% ~ 17.7% at 90 d. The essence of hydrothermal activation was the corrosion of water in the glass.


2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


2021 ◽  
Vol 894 ◽  
pp. 85-93
Author(s):  
Tanikan Thongchai ◽  
Krisana Poolsawat

This research mainly focused on the properties of decorative white cement tiles which made from waste glass and white cement. The ratio of waste glass powder and white cement were studied at 10 : 90, 15 : 85, 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40 and 70 : 30 by using water content at 30 %wt. All components were mixed and cast into the mould. Decorative white cement tiles were curing at 14, 21 and 28 days. In order to characterize physical and mechanical properties, all tiles were measured density, water absorption and compressive strength. According to the results, it can be obviously seen that density increased and water absorption decreased with increasing waste glass powder content. The highest compressive strength of around 36.5 MPa was found at 20 %wt of waste glass powder. However, compressive strength decreased with increasing waste glass powder over 20 %wt (waste glass powder 20: white cement 80). It was found that the lowest compressive strength of around 30.58 MPa was found at 70 %wt of waste glass powder. Curing time also affected properties as it was found that increasing curing time to 28 days resulted in increasing of density and compressive strength. In order to study how long does essential oil last on decorative white cement tiles, the orange essential oil at 1, 5 and 10 %wt were added into the white cement paste by using waste glass powder : white cement at 20 : 80 with 30 %wt of water. Decorative white cement tiles were smelled by 30 people every morning for 30 days and it can be found that 10 %wt of orange essential oil last longest on the decorative white cement tiles with 22 days.


2014 ◽  
Vol 1082 ◽  
pp. 265-269 ◽  
Author(s):  
Guo Jun Ke ◽  
Yan Chao Wang ◽  
Pin Yu Zou ◽  
Dai Nian Zeng

To study the strength of cement mortar with different particle size of waste glass powder, grinding and screening the colorless waste glasses to 38-53,53-75,75-150,150-300,300-600μm, and as supplementary cement materials replacing the cement of cement mortar at 5,10,15,20,25,30%, respectively. Meanwhile divide the experiment into two parts:containing water reducer or not and add fly ash as comparison at the same time, measuring the flexural and compressive strength of cement mortar for 28 days. It is concluded that the flexural and compressive strength of cement mortar are decreased when mix with water reducer with maintaining the dosage of water;The optimum size and amount of waste glass powder in the cement mortar keep the same whether it is mixed water reducer or not; The flexural and compressive strength for 28days of the cement mortar reach the best value and differ with the baseline group very few whether it's mixed water reducer or not.


2020 ◽  
Vol 6 (12) ◽  
pp. 2332-2343
Author(s):  
Fasih Ahmed Khan ◽  
Khan Shahzada ◽  
Qazi Sami Ullah ◽  
Muhammad Fahim ◽  
Sajjad Wali Khan ◽  
...  

This paper presents the study carried out on the utilization of Waste Glass Powder (WGP) as supplementary cementitious material in concrete. The evaluation of the influence of WGP on the mechanical properties of concrete was carried out by casting and testing of concrete samples as per ASTM standards (cylinders and beam elements). The control samples were designed to represent field conditions with a target compressive strength of 20,000 kPa. The Portland cement in concrete was substituted with WGP in proportions of 0%-35% by weight, in increments of 5%. Two curing domains were adopted in the preparation of the test samples to evaluate the effect of pozzolanic material wherein the tested samples were cured for 28, 56, and 84 days. The study results indicated a reduction in compressive strength of concrete up to 10% with partial replacement of cement with 25% of WGP when standard curing of 28 days was adopted. Furthermore, with the same replacement proportion and prolonged curing for 84 days, the gap in strength reduction was reduced by 5%. However, a significant decrease in workability was noted between the control concrete samples and glass powder infused concrete. Furthermore, the Waste Glass Powder Concrete (WGPC) exhibited an improved flexural strength with the modulus of rupture for WGPC being 2% higher than control concrete at the age of 84 days. Based on the results of this study it was concluded that 25% replacement of cement with WGP provides an optimum replacement ratio. Doi: 10.28991/cej-2020-03091620 Full Text: PDF


2018 ◽  
Vol 773 ◽  
pp. 233-237
Author(s):  
Gyeom Boo Kim ◽  
Il Young Jang ◽  
Seong Kyum Kim ◽  
Kwang Woon Lee

In this study, it investigated the micropore changes by aging of LCD waste glass powder and investigated the effects of particle size and replacement ratio on sulfate erosion. Also, the comparison of the compressive strength with that of OPC concrete was carried out to evaluate the sulfate resistance of the LCD waste glass mixed concrete. As a result, resistance to sodium sulfate is better than magnesium sulfate.


Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
Colin Booth

Use of waste materials in concrete is now a global trend for efficient waste management so as to achieve a sustainable green environment and with the added advantages of preserving the natural resources as well as producing a better performing concrete. This study examined the properties of concrete containing ground waste glass powder (GP) as partial replacement for cement. The waste glass was finely grounded into powder and the morphology imagery of the powder materials was carried out using scanning electron microscopy (SEM). Moreover, the chemical composition of the glass powdered material was determined using X-ray fluorescence (XRF). Laboratory tests were carried out to determine the strength activity index, workability, split tensile and compressive strength properties of the concrete with 0%, 15%, 18%, 21%, 24%, 27% and 30% partial replacement of cement with the ground waste glass powder. The results showed that the oxides composition of the glass powder meets the requirements for pozzolanic material, while the SEM morphology shows materials of amorphous flaky solid masses, and based on the 28-day strength activity index, concrete containing 21% cement replacement shows a higher strength index above therecommended 75%. It was also observed that workability of the concrete reduced with increase in percentage glass content while significant improvement of the compressive strength of the concrete was achieved at 21% cement replacement, after which a decrease in strength with increasing percentage glass content was observed. The revealed results were confirmed by the microstructural examination using SEM showing a denser concrete at 21% cement replacement but increase porosityas the glass content increases. However, a decrease in split tensile strength was observed with increasing glass content. The results clearly showed that it is possible to produce moderate strength sustainable concrete for structural application using 20% glass powder as cement replacement.


2018 ◽  
Vol 172 ◽  
pp. 2892-2898 ◽  
Author(s):  
Tawatchai Tho-In ◽  
Vanchai Sata ◽  
Kornkanok Boonserm ◽  
Prinya Chindaprasirt

Sign in / Sign up

Export Citation Format

Share Document