scholarly journals Development of Environment-Friendly Concrete through Partial Addition of Waste Glass Powder (WGP) as Cement Replacement

2020 ◽  
Vol 6 (12) ◽  
pp. 2332-2343
Author(s):  
Fasih Ahmed Khan ◽  
Khan Shahzada ◽  
Qazi Sami Ullah ◽  
Muhammad Fahim ◽  
Sajjad Wali Khan ◽  
...  

This paper presents the study carried out on the utilization of Waste Glass Powder (WGP) as supplementary cementitious material in concrete. The evaluation of the influence of WGP on the mechanical properties of concrete was carried out by casting and testing of concrete samples as per ASTM standards (cylinders and beam elements). The control samples were designed to represent field conditions with a target compressive strength of 20,000 kPa. The Portland cement in concrete was substituted with WGP in proportions of 0%-35% by weight, in increments of 5%. Two curing domains were adopted in the preparation of the test samples to evaluate the effect of pozzolanic material wherein the tested samples were cured for 28, 56, and 84 days. The study results indicated a reduction in compressive strength of concrete up to 10% with partial replacement of cement with 25% of WGP when standard curing of 28 days was adopted. Furthermore, with the same replacement proportion and prolonged curing for 84 days, the gap in strength reduction was reduced by 5%. However, a significant decrease in workability was noted between the control concrete samples and glass powder infused concrete. Furthermore, the Waste Glass Powder Concrete (WGPC) exhibited an improved flexural strength with the modulus of rupture for WGPC being 2% higher than control concrete at the age of 84 days. Based on the results of this study it was concluded that 25% replacement of cement with WGP provides an optimum replacement ratio. Doi: 10.28991/cej-2020-03091620 Full Text: PDF

Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
Colin Booth

Use of waste materials in concrete is now a global trend for efficient waste management so as to achieve a sustainable green environment and with the added advantages of preserving the natural resources as well as producing a better performing concrete. This study examined the properties of concrete containing ground waste glass powder (GP) as partial replacement for cement. The waste glass was finely grounded into powder and the morphology imagery of the powder materials was carried out using scanning electron microscopy (SEM). Moreover, the chemical composition of the glass powdered material was determined using X-ray fluorescence (XRF). Laboratory tests were carried out to determine the strength activity index, workability, split tensile and compressive strength properties of the concrete with 0%, 15%, 18%, 21%, 24%, 27% and 30% partial replacement of cement with the ground waste glass powder. The results showed that the oxides composition of the glass powder meets the requirements for pozzolanic material, while the SEM morphology shows materials of amorphous flaky solid masses, and based on the 28-day strength activity index, concrete containing 21% cement replacement shows a higher strength index above therecommended 75%. It was also observed that workability of the concrete reduced with increase in percentage glass content while significant improvement of the compressive strength of the concrete was achieved at 21% cement replacement, after which a decrease in strength with increasing percentage glass content was observed. The revealed results were confirmed by the microstructural examination using SEM showing a denser concrete at 21% cement replacement but increase porosityas the glass content increases. However, a decrease in split tensile strength was observed with increasing glass content. The results clearly showed that it is possible to produce moderate strength sustainable concrete for structural application using 20% glass powder as cement replacement.


2019 ◽  
Vol 4 (12) ◽  
pp. 53-56
Author(s):  
John Ayibatunimibofa TrustGod ◽  
Akosubo Iwekumo Stevyn ◽  
Ann Diri Manfred

The amounts of waste glass in the Bayelsa State metropolis have been growing noticeably without being reutilized increasing the danger to public well-being because of the shortage of land area. This rising challenge of waste glass in the Bayelsa State metropolis can be improved if new dumping possibilities other than landfill can be discovered. This study is geared toward the better use of waste glass material as admixture in concrete as a means to improve the concrete compressive strength. To achieve research objectives, the broken waste glasses were obtained from aluminum fabrication workshop in Amassoma. Bayelsa state Nigeria, the glasses were then milled to a fine powder smaller than 0.075mm and burnt at a controlled temperature of 200, 400, and 6000C respectively. A total of 156 concrete cubes of 150mm x 150mm x 150mm were produced employing different contents of calcined or burnt waste glass powder as admixture. The quantity of calcined waste glass powder used as admixture was varied from 0-20% at step of 5% for three different temperatures, 2000C, 4000C and 6000C. The samples were cured for 7, 14, 21 and 28days and tested in the laboratory for compressive strength. Results obtained from the study showed that the best addition dosage of calcined waste glass powder at 2000C, 4000C and 6000C are 20%, 5% and 5%. A 20% addition of Calcined waste glass powder at 2000C exhibited about 23% increase in compressive strength than the control. Base on the findings, it is recommended that the use of calcined waste glass powder as pozzolanic material should be embraced for production of concrete and can be utilized in concrete production as admixture with 5% - 20% for 2000C 4000Cand 4000C respectively.


Author(s):  
Shatha Hasan ◽  
Doaa Nayyef

Some mechanical behaviors were tested by investigations of compressive strength, and direct tensile, strength of reactive Powder concrete (RPC) containing recycled glass powder (RGP) as a supplementary, cementitious material. This study goals to survey the pozzolanic activity of recycled glass powder (RGP) up to (30%) silica fume replacement and its effect on the properties of recycled reactive powder concrete (RRPC) that made by waste glass (WG) and recycled fine concrete aggregate, which has not been investigated before. These properties contain compressive strength and direct tensile strength. Glass is principally composed of silica so that when waste glass is grind to micro particle size in RPC as a partial replacement of silica fume could be a substantial step to development of sustainable material. In this study, high strength reactive powder concrete (HSRPC) with mean compressive strength of 118.4 MPa at 28 days slightly decreased when 40% recycled fine concrete aggregate were used then the strength evolve afterward when 20% of waste glass powder WGP was utilized. The strength tests outcomes indicated that waste glass powder gave greater strength compared to ordinary reactive powder concrete.


Author(s):  
Harsh Vaghela

: In this examination an endeavor is made to contemplate the impact of waste glass power in Concrete utilizing waste glass, which is non biodegradable and not reasonable to landfill. This examination is done to utilize such waste materials into development enterprises with the goal that our current circumstance is free to one of the significant contamination created by the assembling ventures. The primary point of this investigation is to use of waste glass power as a halfway substitution of fine total. In this examination the point is to decide the level of glass substitution, bringing about ideal compressive strength. Substantial ostensible blend of M20 with various rates of Glass power has been assessed according to IS 2386(part IV) and IS 383. Squander glass powder was supplant with fine total in different rates, for example, 5%,10%,15%. Reference substantial blend is likewise made for relative reasons.


2013 ◽  
Vol 871 ◽  
pp. 171-178
Author(s):  
Qing Qiu Kong ◽  
Guo Jun Ke ◽  
Dan Wang

The effect of hydrothermal activation indifferent temperature and pressure conditions on the pozzolanic activity of waste glass powder was discussed. The waste glass powder was treated at 108°C, 0.15MPa, 116°C, 0.18MPa and 121°C, 0.2MPa for 2h in an autoclave respectively after milling to 4215cm2/g. Mortar was made with untreated and hydrothermal activated waste glass power replacement of cement at 20% respectively, then tested for compressive strength at 3, 7, 14 , 28 and 90 days. Results showed that compressive strength of cement mortar had varying degrees of decline when replacing cement with untreated waste glass powder, comparing to the control one. Decline amplitude was large at early age and small at late age. Activity of waste glass powder was significantly improved after hydrothermal treatment. Compressive strength of mortar improved as temperature and pressure elevated, obtaining optimal strength at 121°C, 0.2MPa. Compressive strength of mortar with hydrothermal activated glass powder was higher than that with untreated glass powder at all age with 20% cement replacement. Compressive strength increased 5.3% ~ 13.6% at 3 d, 6.8%~9.7% at 28 d, 9.7% ~ 17.7% at 90 d. The essence of hydrothermal activation was the corrosion of water in the glass.


2019 ◽  
Vol 50 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Elżbieta Horszczaruk ◽  
Piotr Brzozowski

The utilization of solid waste materials or industrial waste as partial substitution of cement is growing in construction industry all around world. Less cement consumption causes consequently reduction in CO2 emission into the atmosphere and reduction in energy consumption. This paper examines the possibility of using finely ground waste glass as a partial replacement for cement and as a sealing admixture. Glass powder used in the research was prepared from the glass waste obtained from a local recycling company. Glass cullet made of brown glass, which after rinsing to remove sugars and other impurities, was dried and ground to a fraction below 125 μm.This paper is the revised version of the paper that has been published in the Proceedings of the Creative Construction Conference 2018 (Horszczaruk and Brzozowski, 2018).


Sign in / Sign up

Export Citation Format

Share Document