scholarly journals Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs

2015 ◽  
Vol 14 (4) ◽  
pp. 12217-12227 ◽  
Author(s):  
C.F. Azevedo ◽  
M. Nascimento ◽  
F.F. Silva ◽  
M.D.V. Resende ◽  
P.S. Lopes ◽  
...  
2012 ◽  
Vol 39 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Seung Hwan Lee ◽  
Heong Cheul Kim ◽  
Dajeong Lim ◽  
Chang Gwan Dang ◽  
Yong Min Cho ◽  
...  

2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 142-142
Author(s):  
S Peters ◽  
M Sinecen ◽  
K Kizilkaya ◽  
M Yildiz ◽  
D Garrick ◽  
...  

2013 ◽  
Vol 38 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Jingjie Yan ◽  
Xiaolan Wang ◽  
Weiyi Gu ◽  
LiLi Ma

Abstract Speech emotion recognition is deemed to be a meaningful and intractable issue among a number of do- mains comprising sentiment analysis, computer science, pedagogy, and so on. In this study, we investigate speech emotion recognition based on sparse partial least squares regression (SPLSR) approach in depth. We make use of the sparse partial least squares regression method to implement the feature selection and dimensionality reduction on the whole acquired speech emotion features. By the means of exploiting the SPLSR method, the component parts of those redundant and meaningless speech emotion features are lessened to zero while those serviceable and informative speech emotion features are maintained and selected to the following classification step. A number of tests on Berlin database reveal that the recogni- tion rate of the SPLSR method can reach up to 79.23% and is superior to other compared dimensionality reduction methods.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2050
Author(s):  
Beatriz Castro Dias Cuyabano ◽  
Gabriel Rovere ◽  
Dajeong Lim ◽  
Tae Hun Kim ◽  
Hak Kyo Lee ◽  
...  

It is widely known that the environment influences phenotypic expression and that its effects must be accounted for in genetic evaluation programs. The most used method to account for environmental effects is to add herd and contemporary group to the model. Although generally informative, the herd effect treats different farms as independent units. However, if two farms are located physically close to each other, they potentially share correlated environmental factors. We introduce a method to model herd effects that uses the physical distances between farms based on the Global Positioning System (GPS) coordinates as a proxy for the correlation matrix of these effects that aims to account for similarities and differences between farms due to environmental factors. A population of Hanwoo Korean cattle was used to evaluate the impact of modelling herd effects as correlated, in comparison to assuming the farms as completely independent units, on the variance components and genomic prediction. The main result was an increase in the reliabilities of the predicted genomic breeding values compared to reliabilities obtained with traditional models (across four traits evaluated, reliabilities of prediction presented increases that ranged from 0.05 ± 0.01 to 0.33 ± 0.03), suggesting that these models may overestimate heritabilities. Although little to no significant gain was obtained in phenotypic prediction, the increased reliability of the predicted genomic breeding values is of practical relevance for genetic evaluation programs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua T. Vogelstein ◽  
Eric W. Bridgeford ◽  
Minh Tang ◽  
Da Zheng ◽  
Christopher Douville ◽  
...  

AbstractTo solve key biomedical problems, experimentalists now routinely measure millions or billions of features (dimensions) per sample, with the hope that data science techniques will be able to build accurate data-driven inferences. Because sample sizes are typically orders of magnitude smaller than the dimensionality of these data, valid inferences require finding a low-dimensional representation that preserves the discriminating information (e.g., whether the individual suffers from a particular disease). There is a lack of interpretable supervised dimensionality reduction methods that scale to millions of dimensions with strong statistical theoretical guarantees. We introduce an approach to extending principal components analysis by incorporating class-conditional moment estimates into the low-dimensional projection. The simplest version, Linear Optimal Low-rank projection, incorporates the class-conditional means. We prove, and substantiate with both synthetic and real data benchmarks, that Linear Optimal Low-Rank Projection and its generalizations lead to improved data representations for subsequent classification, while maintaining computational efficiency and scalability. Using multiple brain imaging datasets consisting of more than 150 million features, and several genomics datasets with more than 500,000 features, Linear Optimal Low-Rank Projection outperforms other scalable linear dimensionality reduction techniques in terms of accuracy, while only requiring a few minutes on a standard desktop computer.


2010 ◽  
Vol 31 (12) ◽  
pp. 1720-1727 ◽  
Author(s):  
Michał Lewandowski ◽  
Dimitrios Makris ◽  
Jean-Christophe Nebel

2013 ◽  
Vol 27 (3-4) ◽  
pp. 281-301 ◽  
Author(s):  
Jesús González-Rubio ◽  
J. Ramón Navarro-Cerdán ◽  
Francisco Casacuberta

Sign in / Sign up

Export Citation Format

Share Document