scholarly journals Lack of clinical significance of the ImmuKnowTM-Cylex assay for the detection of cellular immune function in patients with renal cell carcinoma

2015 ◽  
Vol 14 (3) ◽  
pp. 11543-11550
Author(s):  
K. Zheng ◽  
J.P. Zhang ◽  
J.M. Tan ◽  
W.Z. Wu ◽  
S.L. Yang ◽  
...  
Author(s):  
Wuping Yang ◽  
Kenan Zhang ◽  
Lei Li ◽  
Yawei Xu ◽  
Kaifang Ma ◽  
...  

Abstract Background Emerging evidence confirms that lncRNAs (long non-coding RNAs) are potential biomarkers that play vital roles in tumors. ZNF582-AS1 is a novel lncRNA that serves as a potential prognostic marker of cancers. However, the specific clinical significance and molecular mechanism of ZNF582-AS1 in ccRCC (clear cell renal cell carcinoma) are unclear. Methods Expression level and clinical significance of ZNF582-AS1 were determined by TCGA-KIRC data and qRT-PCR results of 62 ccRCCs. DNA methylation status of ZNF582-AS1 promoter was examined by MSP, MassARRAY methylation and demethylation analysis. Gain-of-function experiments were conducted to investigate the biological roles of ZNF582-AS1 in the phenotype of ccRCC. The subcellular localization of ZNF582-AS1 was detected by RNA FISH. iTRAQ, RNA pull-down and RIP-qRT-PCR were used to identify the downstream targets of ZNF582-AS1. rRNA MeRIP-seq and MeRIP-qRT-PCR were utilized to examine the N(6)-methyladenosine modification status. Western blot and immunohistochemistry assays were used to determine the protein expression level. Results ZNF582-AS1 was downregulated in ccRCC, and decreased ZNF582-AS1 expression was significantly correlated with advanced tumor stage, higher pathological stage, distant metastasis and poor prognosis. Decreased ZNF582-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. ZNF582-AS1 overexpression inhibited cell proliferative, migratory and invasive ability, and increased cell apoptotic rate in vitro and in vivo. Mechanistically, we found that ZNF582-AS1 overexpression suppressed the N(6)-methyladenosine modification of MT-RNR1 by reducing rRNA adenine N(6)-methyltransferase A8K0B9 protein level, resulting in the decrease of MT-RNR1 expression, followed by the inhibition of MT-CO2 protein expression. Furthermore, MT-RNR1 overexpression reversed the decreased MT-CO2 expression and phenotype inhibition of ccRCC induced by increased ZNF582-AS1 expression. Conclusions This study demonstrates for the first time that ZNF582-AS1 functions as a tumor suppressor gene in ccRCC and ZNF582-AS1 may serve as a potential biomarker and therapeutic target of ccRCC.


Urology ◽  
1995 ◽  
Vol 46 (4) ◽  
pp. 494-498 ◽  
Author(s):  
Haluk Özen ◽  
Cemil Uygur ◽  
Ahmet Sahin ◽  
Serdar Tekgül ◽  
Ali Ergen ◽  
...  

1996 ◽  
Vol 51 (11) ◽  
pp. 797-800
Author(s):  
B.L. Murphy ◽  
J. Gaa ◽  
N. Papanicolaou ◽  
M.J. Lee

2020 ◽  
Author(s):  
Bitian Liu ◽  
Xiaonan Chen ◽  
Yunhong Zhan ◽  
Bin Wu ◽  
Shen Pan

Abstract Background: Cancer-associated fibroblasts (CAFs) are most abundant in stroma and are critically involved in cancer progression. However, the specific signature of CAFs and related clinicopathological parameters in renal cell carcinoma (RCC) remain unclear. Methods: In this work, methods using recognized gene signatures were employed to roughly assess the infiltration level of the stroma and CAFs in RCC based on the data in The Cancer Genome Atlas. Weighted gene co-expression network analysis (WGCNA) was used to cluster transcriptomes and correlate with CAFs to identify specific markers. A comparison of fibroblast versus urothelial carcinoma cell lines and correlation with previously reported CAF markers were performed to demonstrate the specific expressed of the gene signature. The gene signature was used to compare fibroblast infiltration of each sample through single sample gene set enrichment analysis, and the clinical significance of fibroblasts was analyzed via Cox risk assessment and the chi-square test. Finally, we used validation data to verify the clinical significance of the fibroblast gene signature in RCC. Results: Roughly calculated tumor matrix and CAF levels were significantly higher in kidney cancer than in normal tissues. More than 85% of fibroblast-specific markers identified by WGCNA were consistent with markers obtained via single-cell sequencing. These markers were more highly expressed in fibroblast cell lines and were significantly correlated with canonical CAFs makers. Data validation also showed that CAFs were significant correlation with survival and pathological grade. Conclusions: In summary, our findings indicate that the gene signature potentially serves as a biomarker of CAFs in RCC and that infiltration of fibroblasts in RCC is an independent prognostic factor associated with pathological grade and stage of tumor. The ability to recognize specific CAF markers using WGCNA is comparable to single-cell sequencing.


2019 ◽  
Vol 110 (2) ◽  
pp. 617-628 ◽  
Author(s):  
Yoshiyuki Yamamoto ◽  
Motohide Uemura ◽  
Masashi Fujita ◽  
Kazuhiro Maejima ◽  
Yoko Koh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document