scholarly journals Identification Of Gene Signature For Renal Cell Carcinoma-Associated Fibroblasts Mediating Cancer Progression And Affecting Prognosis

2020 ◽  
Author(s):  
Bitian Liu ◽  
Xiaonan Chen ◽  
Yunhong Zhan ◽  
Bin Wu ◽  
Shen Pan

Abstract Background: Cancer-associated fibroblasts (CAFs) are most abundant in stroma and are critically involved in cancer progression. However, the specific signature of CAFs and related clinicopathological parameters in renal cell carcinoma (RCC) remain unclear. Methods: In this work, methods using recognized gene signatures were employed to roughly assess the infiltration level of the stroma and CAFs in RCC based on the data in The Cancer Genome Atlas. Weighted gene co-expression network analysis (WGCNA) was used to cluster transcriptomes and correlate with CAFs to identify specific markers. A comparison of fibroblast versus urothelial carcinoma cell lines and correlation with previously reported CAF markers were performed to demonstrate the specific expressed of the gene signature. The gene signature was used to compare fibroblast infiltration of each sample through single sample gene set enrichment analysis, and the clinical significance of fibroblasts was analyzed via Cox risk assessment and the chi-square test. Finally, we used validation data to verify the clinical significance of the fibroblast gene signature in RCC. Results: Roughly calculated tumor matrix and CAF levels were significantly higher in kidney cancer than in normal tissues. More than 85% of fibroblast-specific markers identified by WGCNA were consistent with markers obtained via single-cell sequencing. These markers were more highly expressed in fibroblast cell lines and were significantly correlated with canonical CAFs makers. Data validation also showed that CAFs were significant correlation with survival and pathological grade. Conclusions: In summary, our findings indicate that the gene signature potentially serves as a biomarker of CAFs in RCC and that infiltration of fibroblasts in RCC is an independent prognostic factor associated with pathological grade and stage of tumor. The ability to recognize specific CAF markers using WGCNA is comparable to single-cell sequencing.

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Tomonori Sato ◽  
Yoshihide Kawasaki ◽  
Masamitsu Maekawa ◽  
Shinya Takasaki ◽  
Kento Morozumi ◽  
...  

Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.


Author(s):  
Bitian Liu ◽  
Xiaonan Chen ◽  
Yunhong Zhan ◽  
Bin Wu ◽  
Shen Pan

Background: Cancer-associated fibroblasts (CAFs) are mainly involved in cancer progression and treatment failure. However, the specific signature of CAFs and their related clinicopathological parameters in renal cell carcinoma (RCC) remain unclear. Here, methods to recognize gene signatures were employed to roughly assess the infiltration of CAFs in RCC, based on the data from The Cancer Genome Atlas (TCGA). Weighted Gene Coexpression Network Analysis (WGCNA) was used to cluster transcriptomes and correlate with CAFs to identify the gene signature. Single-cell and cell line sequencing data were used to verify the expression specificity of the gene signature in CAFs. The gene signature was used to evaluate the infiltration of CAFs in each sample, and the clinical significance of each key gene in the gene signature and CAFs was analyzed. We observed that the CAF infiltration was higher in kidney cancer and advanced tumor stage and grade than in normal tissues. The seven key genes of the CAF gene signature identified using WGCNA showed high expression of CAF-related characteristics in the cell clustering landscape and fibroblast cell lines; these genes were found to be associated with extracellular matrix function, collagen synthesis, cell surface interaction, and adhesion. The high CAF infiltration and the key genes were verified from the TCGA and Gene Expression Omnibus data related to the advanced grade, advanced stage, and poor prognosis of RCC. In summary, our findings indicate that the clinically significant gene signature may serve as a potential biomarker of CAFs in RCC, and the infiltration of CAFs is associated with the pathological grade, stage, and prognosis of RCC.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15014-e15014
Author(s):  
Aaron Tyznik ◽  
Yannick Simoni ◽  
Shamin Li ◽  
Summer Zhuang ◽  
Evan Newell

e15014 Background: Recently, using human colorectal and lung cancer, we showed that CD8+ T cells infiltrating tumor tissue (TILs) are not only specific for tumor antigens, but are also composed of CD8+ TILs specific for cancer unrelated epitopes – called bystander – such as HCMV, EBV or flu epitopes. We also showed that the surface marker CD39 can be useful for discriminating bystander (CD39−) from tumor-specific (CD39+) CD8+ TILs (Simoni et al, Nature, 2018). Methods: Here, our aim was to test these findings in human Renal cell Carcinoma (RCC) and to better understand the biology of these bystander CD8+ TILs. Results: Surprisingly, our primary CYTOF analyses showed heterogeneity within bystander CD8 TILs that possess various phenotypes including effector (CD45RO+), memory (CD45RO+ CCR7+), Trm (CD69+ CD103+/–), and senescent (CD57+ KLRG1+) cell features. Using targeted mRNA single-cell sequencing combined with BD AbSeq assay, we analyzed sorted CD8+ TILs from RCC patients and identified bystander CD8+ TILs using oligo-tagged tetramers. Gene signature analysis of these different subsets revealed transcriptomic similarities with the tumor-specific CD8+ TILs. Conclusions: Our data provide a comprehensive perspective of cancer unrelated CD8+ TILs in RCC and suggest functional roles for these cells in tumor immune responses, which could lead to new diagnostic and therapeutic strategies.


Author(s):  
Youfeng Yang ◽  
Christopher J. Ricketts ◽  
Cathy D. Vocke ◽  
J. Keith Killian ◽  
Hesed M. Padilla‐Nash ◽  
...  

Author(s):  
Wuping Yang ◽  
Kenan Zhang ◽  
Lei Li ◽  
Yawei Xu ◽  
Kaifang Ma ◽  
...  

Abstract Background Emerging evidence confirms that lncRNAs (long non-coding RNAs) are potential biomarkers that play vital roles in tumors. ZNF582-AS1 is a novel lncRNA that serves as a potential prognostic marker of cancers. However, the specific clinical significance and molecular mechanism of ZNF582-AS1 in ccRCC (clear cell renal cell carcinoma) are unclear. Methods Expression level and clinical significance of ZNF582-AS1 were determined by TCGA-KIRC data and qRT-PCR results of 62 ccRCCs. DNA methylation status of ZNF582-AS1 promoter was examined by MSP, MassARRAY methylation and demethylation analysis. Gain-of-function experiments were conducted to investigate the biological roles of ZNF582-AS1 in the phenotype of ccRCC. The subcellular localization of ZNF582-AS1 was detected by RNA FISH. iTRAQ, RNA pull-down and RIP-qRT-PCR were used to identify the downstream targets of ZNF582-AS1. rRNA MeRIP-seq and MeRIP-qRT-PCR were utilized to examine the N(6)-methyladenosine modification status. Western blot and immunohistochemistry assays were used to determine the protein expression level. Results ZNF582-AS1 was downregulated in ccRCC, and decreased ZNF582-AS1 expression was significantly correlated with advanced tumor stage, higher pathological stage, distant metastasis and poor prognosis. Decreased ZNF582-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. ZNF582-AS1 overexpression inhibited cell proliferative, migratory and invasive ability, and increased cell apoptotic rate in vitro and in vivo. Mechanistically, we found that ZNF582-AS1 overexpression suppressed the N(6)-methyladenosine modification of MT-RNR1 by reducing rRNA adenine N(6)-methyltransferase A8K0B9 protein level, resulting in the decrease of MT-RNR1 expression, followed by the inhibition of MT-CO2 protein expression. Furthermore, MT-RNR1 overexpression reversed the decreased MT-CO2 expression and phenotype inhibition of ccRCC induced by increased ZNF582-AS1 expression. Conclusions This study demonstrates for the first time that ZNF582-AS1 functions as a tumor suppressor gene in ccRCC and ZNF582-AS1 may serve as a potential biomarker and therapeutic target of ccRCC.


2021 ◽  
Vol 10 (1) ◽  
pp. 1933332
Author(s):  
Xiaomao Yin ◽  
Zaoyu Wang ◽  
Jianfeng Wang ◽  
Yunze Xu ◽  
Wen Kong ◽  
...  

2011 ◽  
Vol 58 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Seong H Yoo ◽  
Kyoungbun Lee ◽  
Ji Y Chae ◽  
Kyung C Moon

Sign in / Sign up

Export Citation Format

Share Document