scholarly journals Mitotic behavior in root tips of Brachiaria genotypes with meiotic chromosome elimination during microsporogenesis

2008 ◽  
Vol 7 (2) ◽  
pp. 336-341 ◽  
Author(s):  
M.F. Felismino ◽  
N. Silva ◽  
M.S. Pagliarini ◽  
C.B. Valle
1997 ◽  
Vol 110 (6) ◽  
pp. 721-730 ◽  
Author(s):  
M.R. Esteban ◽  
M.C. Campos ◽  
A.L. Perondini ◽  
C. Goday

Spindle formation and chromosome elimination during male meiosis in Sciara ocellaris (Diptera, Sciaridae) has been studied by immunofluorescence techniques. During meiosis I a monopolar spindle is formed from a single polar complex (centrosome-like structure). This single centrosomal structure persists during meiosis II and is responsible for the non-disjunction of the maternal X chromatids. During meiosis I and II non-spindle microtubules are assembled in the cytoplasmic bud regions of the spermatocytes. The chromosomes undergoing elimination during both meiotic divisions are segregated to the bud region where they associate with bundles of microtubules. The presence and distribution of centrosomal antigens in S. ocellaris meiotic spindles and bud regions has been investigated using different antibodies. gamma-Tubulin and centrin are present in the bud as well as in the single polar complex of first meiotic spindle. The results suggest that spermatocyte bud regions contain microtubule-organizing centres (MTOCs) that nucleate cytoplasmic microtubules that are involved in capturing chromosomes in the bud regions. The distribution of actin and myosin in the spermatocytes during meiosis is also reported.


Genome ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Sawsan S. Youssef ◽  
R. Morris ◽  
P. S. Baenziger ◽  
C. M. Papa

Karyotype stability, which is essential when using wheat (Triticum aestivum L.) doubled haploids in a breeding program, was evaluated in 14 anther-derived doubled-haploid lines after at least three generations of selfing, by crossing them as females with the parent cultivar 'Centurk' and doing cytological studies on the progenies. There were no deviations from the hexaploid chromosome number (2n = 42) in root tips. Meiotic chromosome pairing was as stable as that in the control ('Centurk' × 'Centurk') in most progenies. Chromosomal structural changes and (or) behavioral deviations were detected at the metaphase I, anaphase I, telophase I, and quartet stages of meiosis in a minor proportion of the cells. The frequencies of multivalents, lagging bivalents and univalents, bridges, and micronuclei were higher in some progenies than in the control. Chromosomal fragments were infrequent. The ranges in percentages of normal cells were 72.4–90.0 at anaphase I, 76.4–92.6 at telophase I, and 82.6–93.2 at quartet stages in the doubled-haploid progenies, compared with 95–100, 92–100, and 94–96, respectively, in the control. On the basis of these results, the doubled-haploid lines should produce enough normal gametes to provide adequate seed supplies when they are used as parents in wheat cultivar and population improvement.Key words: Triticum aestivum, chromosome pairing, chromosome aberrations, gametoclonal variation.


1959 ◽  
Vol 37 (6) ◽  
pp. 1271-1276 ◽  
Author(s):  
Koichiro Tsunewaki

A plant having 41 normal rod-shaped chromosomes and a ring chromosome was found among hexaploid.F1 hybrids from a wheat–Agropyron cross. Cytological investigations were carried out to determine the mitotic behavior of this ring chromosome.The investigations revealed that most of the possible products of the breakage–fusion–bridge cycle known to occur in a ring chromosome were present in root tip cells. The fact that a rod-shaped chromosome is not derived from a ring chromosome in the cycle was confirmed, because no metaphase cells examined had 42 or more rod-shaped chromosomes.About 80% of the ring chromosomes were eliminated from the root tips of the seedling after 26 days. The size of the ring chromosome did not appear to influence the rate of elimination. The polyploid nature of the plant may account for the rapid, non-differential elimination of this chromosome.


Author(s):  
Kesara Anamthawat-Jónsson ◽  
Puangpaka Umpunjun

Polyploidy is common in the ginger family Zingiberaceae. The aims of the present paper are (1) to provide a general introduction on species diversity with emphasis on conservation; (2) to highlight the human-use significance of this family, focusing on the two major genera, Zingiber (ginger) and Curcuma (turmeric); (3) to present chromosome number data from 45 natural and cultivated Curcuma taxa from Thailand, of which polyploids are predominant; and (4) to describe our own work on cytotaxonomy of selected Thai Curcuma species. We obtained somatic chromosome numbers from root tips and analysed meiotic chromosome behaviour from flowers. We also used the molecular cytogenetic method of ribosomal gene mapping on chromosomes to infer mechanism of polyploidization and reveal genomic relationships among closely related species. The main results of our cytogenetic studies include the following. The most sought-after medicinal Curcuma cultivars growing on a large-scale basis are secondary triploids, so as taxa in natural habitats that are harvested for local utilisation. These triploids are sexually deficient, due to meiotic pairing abnormalities, but they are propagated asexually via rhizomes. The ribosomal mapping results indicate natural triploidization process via hybridisation, either within populations or across the species boundaries.


Genome ◽  
1993 ◽  
Vol 36 (2) ◽  
pp. 350-355
Author(s):  
R. J. Singh ◽  
T. Tsuchiya

The origin, identification, meiotic chromosome behavior, and breeding behavior of an unstable trisomic barley were studied. The extra chromosome originated by breakage and fusion of an acrocentric chromosome 3 in a plant from an F2 population of a cross between acrotrisomic 3L3S (2n = 14 + 1 acro3L3S) and a balanced lethal stock, xc. (xantha) ac (albino). The F2 population segregated only for the albino trait. The genotypic constitution of the trisomic plant was ac ac (for both normal chromosome 3) and Ac (for the unstable metacentric chromosome). The unstable extra metacentric chromosome was designated as metacentric 3B (abbreviated as meta3B). Meiotic chromosome behavior in plants with 2n = 14 + 1 meta3B differed from plant to plant and within spikes. Some plants showed only trisomic cells with a chromosome configuration of 1 III + 6 II and 7 II + 1 I at metaphase I, whereas other plants showed both trisomie and disomic cells (7 II) that resulted from the elimination of the extra meta3B. The frequency of ring trivalents was low (6.8%). An average transmission rate of unstable meta3B ranged from 4.3 to 12.9%. The elimination of meta3B, and hence loss of the dominant Ac allele, resulted in albino seedlings as well as white stripes on plants, leaves, and spikes. Chromosome numbers of albino seedlings in the progeny of 2n = 14 + 1 meta3B were all diploid (2n = 14), while green seedlings contained 2n = 14 + 1 meta3B. However, progenies of some spikes of one trisomic plant showed a low frequency of green diploids and metatrisomics (2n = 14 + 1 meta3B), which was attributed to crossing-over.Key words: aneuploid, chromosome elimination, kinetochore, meta3B.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
Y. R. Chen ◽  
Y. F. Huang ◽  
W. S. Chen

Acid phosphatases are widely distributed in different tisssues of various plants. Studies on subcellular localization of acid phosphatases show they might be present in cell wall, plasma lemma, mitochondria, plastid, vacuole and nucleus. However, their localization in rice cell varies with developmental stages of cells and plant tissues. In present study, acid phosphatases occurring in root cap are examined.Sliced root tips of ten-day-old rice(Oryza sativa) seedlings were fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde for 2h, washed overnight in same buffer solution, incubated in Gomori's solution at 37° C for 90min, post-fixed in OsO4, dehydrated in ethanol series and finally embeded in Spurr's resin. Sections were doubly stained with uranyl acetate and lead citrate, and observed under Hitachi H-600 at 75 KV.


Author(s):  
P.T. Nguyen ◽  
C. Uphoff ◽  
C.L. Stinemetz

Considerable evidence suggest that the calcium-binding protein calmodulin (CaM) may mediate calcium action and/or transport important in the gravity response of plants. Calmodulin is present in both shoots and roots and is capable of regulating calcium transport in plant vesicles. In roots calmodulin is concentrated in the tip, the gravisensing region of the root; and is reported to be closely associated with amyloplasts, organelles suggested to play a primary role in gravi-perception. Inhibitors of CaM such as chlorpromazine, calmidazolium, and compound 48/80 interfere with the gravitropic response of both snoots and roots. The magnitude of the inhibition corresponded well with the extent to which the drug binds to endogenous CaM. Compound 48/80 and calmidazolium block gravi-induced changes in electrical currents across root tips, a phenomenon thought to be associated with the sensing of the gravity stimulus.In this study, we have investigated the subcellular distribution of CaM in graviresponsive and non-graviresponsive root caps of the maize cultivar Merit.


Sign in / Sign up

Export Citation Format

Share Document