Role of microtubules and microtubule organizing centers on meiotic chromosome elimination in Sciara ocellaris

1997 ◽  
Vol 110 (6) ◽  
pp. 721-730 ◽  
Author(s):  
M.R. Esteban ◽  
M.C. Campos ◽  
A.L. Perondini ◽  
C. Goday

Spindle formation and chromosome elimination during male meiosis in Sciara ocellaris (Diptera, Sciaridae) has been studied by immunofluorescence techniques. During meiosis I a monopolar spindle is formed from a single polar complex (centrosome-like structure). This single centrosomal structure persists during meiosis II and is responsible for the non-disjunction of the maternal X chromatids. During meiosis I and II non-spindle microtubules are assembled in the cytoplasmic bud regions of the spermatocytes. The chromosomes undergoing elimination during both meiotic divisions are segregated to the bud region where they associate with bundles of microtubules. The presence and distribution of centrosomal antigens in S. ocellaris meiotic spindles and bud regions has been investigated using different antibodies. gamma-Tubulin and centrin are present in the bud as well as in the single polar complex of first meiotic spindle. The results suggest that spermatocyte bud regions contain microtubule-organizing centres (MTOCs) that nucleate cytoplasmic microtubules that are involved in capturing chromosomes in the bud regions. The distribution of actin and myosin in the spermatocytes during meiosis is also reported.

2021 ◽  
Author(s):  
Brigitte de Saint Phalle ◽  
Rudolf Oldenbourg ◽  
Donna F. Kubai ◽  
Edward D. Salmon ◽  
Susan A. Gerbi

Meiosis in male Sciara is unique with a single centrosome. A monopolar spindle forms in meiosis I, but a bipolar spindle forms in meiosis II. The imprinted paternal chromosomes are eliminated in meiosis I; there is non-disjunction of the X in meiosis II. Despite differences in spindle construction and chromosome behavior, both meiotic divisions are asymmetric, producing a cell and a small bud. Observations of live spermatocytes made with the LC-PolScope, differential interference contrast optics and fluorescence revealed maternal and paternal chromosome sets on the monopolar spindle in meiosis I and formation of an asymmetric monastral bipolar spindle in meiosis II where all chromosomes except the X congress to the metaphase plate. The X remains near the centrosome after meiosis I and stays with it as the spindle forms in meiosis II. Electron microscopy revealed amorphous material between the X and the centrosome. Immunofluorescence with an antibody against the checkpoint protein Mad2 stains the centromeres of the maternal X dyad in late meiosis I and in meiosis II where it fails to congress to the metaphase plate. Mad2 is also present throughout the paternal chromosomes destined for elimination in meiosis I, suggesting a possible role in chromosome imprinting. If Mad2 on the X dyad mediates a spindle checkpoint in meiosis II, it may delay metaphase to facilitate formation of the second half spindle through a non-centrosomal mechanism.


2018 ◽  
Author(s):  
Luciana Previato de Almeida ◽  
Jared M. Evatt ◽  
Hoa H. Chuong ◽  
Emily L. Kurdzo ◽  
Craig A. Eyster ◽  
...  

ABSTRACTFaithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.SIGNIFICANCEMeiotic crossovers form a connection between homologous chromosomes that allows them to attach to the spindle as a single unit in meiosis I. In humans, failures in this process are a leading cause of aneuploidy. A recently described process, called centromere pairing, can also help connect meiotic chromosome partners in meiosis. Homologous chromosomes become tightly joined by a structure called the synaptonemal complex (SC) in meiotic prophase. After the SC disassembles, persisting SC proteins at the centromeres mediate their pairing. Here, studies in mouse spermatocytes and yeast are used to show that the shugoshin protein helps SC components persist at centromeres and helps centromere pairing promote the proper segregation of yeast chromosomes that fail to become tethered by crossovers.


2015 ◽  
Vol 211 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Hui-Ju Yang ◽  
Haruhiko Asakawa ◽  
Tokuko Haraguchi ◽  
Yasushi Hiraoka

During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase.


2004 ◽  
Vol 15 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Rita Gandhi ◽  
Silvia Bonaccorsi ◽  
Diana Wentworth ◽  
Stephen Doxsey ◽  
Maurizio Gatti ◽  
...  

We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.


1982 ◽  
Vol 93 (3) ◽  
pp. 655-669 ◽  
Author(s):  
D F Kubai

Light microscope descriptions of meiosis I in males of the fungus gnat Sciara coprophila suggested the presence of a monopolar spindle in which maternal and limited chromosomes move poleward while paternal chromosomes "back away" from the pole. The ultrastructural analysis reported here, based upon serial sections of cells in different stages of meiosis I, shows that the spindle is indeed monopolar with a distinctive differentiation, the polar complex, at one pole. This complex is the focus of a conical radiation of spindle microtubules. Kinetochores of paternal chromosomes face the complex and microtubules associated with these kinetochores run toward the complex. No kinetochore microtubules were discovered on maternal or limited chromosomes. When the position of paternal, maternal, and limited chromosomes is compared at various stages, it is found that limited chromosomes always remain near the polar complex, paternal chromosomes remain far from it and only maternal chromosomes move closer to the pole. Apparently, chromosome segregation does not depend on paternal chromosomes "backing away" from the pole, and the required movement of maternal chromosomes take place in the absence of kinetochore microtubules. In the prophase nucleus, limited and maternal chromosomes are already spatially separate from paternal chromosomes before the spindle forms. Thus, the monopolar spindle functions only to increase the distance between already segregated sets of chromosomes. An extensive system of microtubule-associated membranes outlines the spindle; the possibility that maternal chromosome movement is somehow related to the presence of this membrane is discussed.


2005 ◽  
Vol 169 (3) ◽  
pp. 447-457 ◽  
Author(s):  
Hsin-ya Yang ◽  
Paul E. Mains ◽  
Francis J. McNally

In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Gunar Fabig ◽  
Robert Kiewisz ◽  
Norbert Lindow ◽  
James A Powers ◽  
Vanessa Cota ◽  
...  

Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Karamtzioti ◽  
G Tiscornia ◽  
D Garcia ◽  
A Rodriguez ◽  
I Vernos ◽  
...  

Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable


2020 ◽  
Vol 10 (5) ◽  
pp. 1765-1774
Author(s):  
Ahmed Majekodunmi ◽  
Amelia O. Bowen ◽  
William D. Gilliland

The physical connections established by recombination are normally sufficient to ensure proper chromosome segregation during female Meiosis I. However, nonexchange chromosomes (such as the Muller F element or “dot” chromosome in D. melanogaster) can still segregate accurately because they remain connected by heterochromatic tethers. A recent study examined female meiosis in the closely related species D. melanogaster and D. simulans, and found a nearly twofold difference in the mean distance the obligately nonexchange dot chromosomes were separated during Prometaphase. That study proposed two speculative hypotheses for this difference, the first being the amount of heterochromatin in each species, and the second being the species’ differing tolerance for common inversions in natural populations. We tested these hypotheses by examining female meiosis in 12 additional Drosophila species. While neither hypothesis had significant support, we did see 10-fold variation in dot chromosome sizes, and fivefold variation in the frequency of chromosomes out on the spindle, which were both significantly correlated with chromosome separation distances. In addition to demonstrating that heterochromatin abundance changes chromosome behavior, this implies that the duration of Prometaphase chromosome movements must be proportional to the size of the F element in these species. Additionally, we examined D. willistoni, a species that lacks a free dot chromosome. We observed that chromosomes still moved out on the meiotic spindle, and the F element was always positioned closest to the spindle poles. This result is consistent with models where one role of the dot chromosomes is to help organize the meiotic spindle.


2019 ◽  
Vol 116 (19) ◽  
pp. 9417-9422 ◽  
Author(s):  
Luciana Previato de Almeida ◽  
Jared M. Evatt ◽  
Hoa H. Chuong ◽  
Emily L. Kurdzo ◽  
Craig A. Eyster ◽  
...  

Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.


Sign in / Sign up

Export Citation Format

Share Document