scholarly journals Seasonal prevalence of natural enemies of the diamondback moth, Plutella xylostella L. in Kagoshima Prefecture.

1992 ◽  
Vol 38 ◽  
pp. 122-126
Author(s):  
Koji KAWASOE ◽  
Kanetosi KUSIGEMATI ◽  
Mami MURATA ◽  
Akira TANAKA
1992 ◽  
Vol 38 ◽  
pp. 142-145
Author(s):  
Hiroshi YOKOYAMA ◽  
Akira TANAKA ◽  
Hiroshi SUENAGA ◽  
Hideaki INOUE ◽  
Kanetosi KUSIGEMATI

2013 ◽  
Vol 25 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Gallo Sow ◽  
Karamoko Diarra ◽  
Laurence Arvanitakis ◽  
Dominique Bordat

ABSTRACT The impact of abiotic and biotic factors (rainfall, temperature, host plant and natural enemies) on population dynamics of the Plutella xylostella L. diamondback moth was investigated. The experiments were conducted during the rainy and dry seasons for two years (June 2009-April 2011) on unsprayed cabbage plots in Malika (Senegal). Every 10 days, 10 cabbages were randomly selected. Plutella xylostella larvae, pupae and parasitoid cocoons were recorded on each plant. Before each sampling, the diameters and ages of plants were recorded. Temperature and rainfall were also recorded during this study. Larvae and pupae of P. xylstella were higher for the dry season than the rainy season. There was a negative correlation between temperature and P. xylostella populations, and a strong relationship between P. xylostella populations and the age of cabbages. Females oviposited on young cabbages where the presence of young larvae was important, whereas older immature stages were mainly found in older cabbage plants. Parasitoid populations were higher for the dry season than the rainy season. High temperatures did not increase the pest populations and parasitism rate. There was no effect found on pest, plants and natural enemies due to rainfall. There was a positive correlation between pest populations and parasitism. Four Hymenoptera species were found: Oomyzus sokolowskii, Apanteles litae, Cotesia plutellae and Brachymeria citrae, but they were not efficient to control the P. xylostella populations. These results are important for understanding the factors that promote or inhibit pest populations and their natural enemies, and therefore essential for effective crop protection.


2018 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Xuan Huang ◽  
Xiaoyu Quan ◽  
Xia Wang ◽  
Yueli Yun ◽  
Yu Peng

Spiders, as predators of insects and other invertebrates, are an important part of the natural enemies, and they are recognized as an important biological control agent. Plutellaxylostella (Linnaeus, 1758), the diamondback moth (DBM), is a well-known and destructive insect pest of brassicaceous crops worldwide. Here, we analyzed the functional responses of four spiders (Araneae) – Ebrechtellatricuspidata (Fabricius, 1775) (Thomisidae), Pardosalaura (Karsch, 1879) (Lycosidae), Pardosaastrigera (Koch, 1878) (Lycosidae), and Pardosapseudoannulata (Bösenberg & Strand, 1906) (Lycosidae) – on P.xylostella larvae. We also analyzed intraspecific disturbances in the predation reaction and the intensity of scrambling competition of the spiders to P.xylostella larvae. Our results demonstrated that the functional responses of four spiders of different genera were in line with the Holling II model. Two Lycosidae spiders (P.astrigera and P.pseudoannulata) had the potential to control P.xylostella, and female and male spiders that belonged to the same species had different functional responses to P.xylostella. The functional responses of female predation of P.astrigena, P.laura, and P.pseudoannulata was stronger than the males, but male E.tricuspidatus had stronger functional responses to predation than females. We used the Hassell model to describe the intraspecific disturbance experiments of four spiders. There were intraspecific disturbances in the predation reactions of spiders, indicating that the predation ratio of spiders decreased in relation to the increase of its density, and with the increase of spider density, the intensity of scrambling competition of the spider increased.


2017 ◽  
Vol 43 (2) ◽  
pp. 195
Author(s):  
Robson Thomaz Thuler ◽  
Fernando Henrique Iost Filho ◽  
Hamilton César De Oliveira Charlo ◽  
Sergio Antônio De Bortoli

Plant induced resistance is a tool for integrated pest management, aimed at increasing plant defense against stress, which is compatible with other techniques. Rhizobacteria act in the plant through metabolic changes and may have direct effects on plant-feeding insects. The objective of this study was to determine the effects of cabbage plants inoculated with rhizobacteria on the biology and behavior of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Cabbage seeds inoculated with 12 rhizobacteria strains were sowed in polystyrene trays and later transplanted into the greenhouse. The cabbage plants with sufficient size to support stress were then infested with diamondback moth caterpillars. Later, healthy leaves suffering injuries were collected and taken to the laboratory to feed P. xylostella second instar caterpillars that were evaluated for larval and pupal viability and duration, pupal weight, and sex ratio. The reduction of leaf area was then calculated as a measure of the amount of larval feeding. Non-preference for feeding and oviposition assays were also performed, by comparing the control treatment and plants inoculated with different rhizobacterial strains. Plants inoculated with the strains EN4 of Kluyvera ascorbata and HPF14 of Bacillus thuringiensis negatively affected the biological characteristics of P. xylostella when such traits were evaluated together, without directly affecting the insect behavior.


Sign in / Sign up

Export Citation Format

Share Document