scholarly journals Decreased expression of the long non-coding RNA HOXD-AS2 promotes gastric cancer progression by targeting HOXD8 and activating PI3K/Akt signaling pathway

2020 ◽  
Vol 12 (11) ◽  
pp. 1237-1254
Author(s):  
Lin Yao ◽  
Peng-Cheng Ye ◽  
Wang Tan ◽  
Ya-Jun Luo ◽  
Wan-Ping Xiang ◽  
...  
2018 ◽  
Vol 72 ◽  
pp. 107-116 ◽  
Author(s):  
Yan Zhang ◽  
Peisheng Chen ◽  
Wei Yin ◽  
Ye Ji ◽  
Qin Shen ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (44) ◽  
pp. 76279-76289 ◽  
Author(s):  
Congcong Shen ◽  
Yao-Hua Song ◽  
Yufeng Xie ◽  
Xiaoxiao Wang ◽  
Yunliang Wang ◽  
...  

2017 ◽  
Vol 43 (5) ◽  
pp. 2117-2132 ◽  
Author(s):  
Hai-Bo Li ◽  
Qi-Sheng You ◽  
Li-Xin Xu ◽  
Li-Xin Sun ◽  
Aman Shah Abdul Majid ◽  
...  

Background/Aims: The aim of the present study is to investigate the effect of long non-coding RNA-MALAT1 (LncRNA-MALAT1) on retinal ganglion cell (RGC) apoptosis mediated by the PI3K/Akt signaling pathway in rats with glaucoma. Methods: RGCs were isolated and cultured, and monoclonal antibodies (anti-rat Thy-1, Brn3a and RBPMS) were examined by immunocytochemistry. An overexpression vector MALAT1-RNA activation (RNAa), gene knockout vector MALAT1-RNA interference (RNAi), and control vector MALAT1-negative control (NC) were constructed. A chronic high intraocular pressure (IOP) rat model of glaucoma was established by episcleral vein cauterization. The RGCs were divided into the RGC control, RGC pressure, RGC pressure + MALAT1-NC, RGC pressure + MALAT1-RNAi and RGC pressure + MALAT1-RNAa groups. Sixty Sprague-Dawley (SD) rats were randomly divided into the normal, high IOP, high IOP + MALAT1-NC, high IOP + MALAT1-RNAa and high IOP + MALAT1-RNAi groups. qRT-PCR and western blotting were used to detect the expression levels of LncRNA-MALAT1 and PI3K/Akt. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect RGC apoptosis. Results: Immunocytochemistry revealed that the cultured RGCs reached 90% purity. Compared with the RGC pressure + MALAT1-NC group, the RGC pressure + MALAT1-RNAa group exhibited elevated expression levels of MALAT1, lower total protein levels of PI3K and Akt and decreased RGC apoptosis, while these expression levels were reversed in the RGC pressure + MALAT1-RNAi group. RGC numbers and PI3K/Akt expression levels in the high IOP model groups were lower than those in the normal group. In the high IOP + MALAT1-RNAa group, the mRNA and protein expression levels of PI3K/Akt were reduced but higher than those in the other three high IOP model groups. Additionally, RGC numbers in the high IOP + MALAT1-RNAa group were lower than those in the normal group but higher than those in the other three high IOP model groups. Conclusion: Our study provides evidence that LncRNA-MALAT1 could inhibit RGC apoptosis in glaucoma through activation of the PI3K/Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document