gastric cancer progression
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 234)

H-INDEX

39
(FIVE YEARS 14)

2022 ◽  
Vol 16 ◽  
pp. 101308
Author(s):  
Wei Yuan ◽  
Shiqiang Chen ◽  
Bo Li ◽  
Xiaoyu Han ◽  
Bo Meng ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Haijuan Gu ◽  
Yuejiao Zhong ◽  
Jibin Liu ◽  
Qian Shen ◽  
Rong Wei ◽  
...  

Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3’ untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.


2022 ◽  
Vol 11 ◽  
Author(s):  
Weiwei Sheng ◽  
Weihong Zhou ◽  
Yundi Cao ◽  
Yuejiao Zhong

Long non-coding RNAs (lncRNAs) are key regulators in the pathophysiology of gastric cancer, and lncRNAs have been regarded as potential biomarkers and therapeutic targets for gastric cancer. The present study performed the WGCNA analysis of the GSE70880 dataset and aimed to identify novel lncRNAs associated with gastric cancer progression. Based on the WGCNA, the lncRNAs and mRNA co-expression network were constructed. A total of four modules were identified and the eigengenes in different modules were involved in various key signaling pathways. Furthermore, the co-expression networks were constructed between the lncRNAs and mRNA; this leads to the identification of 6 modules, which participated in various cellular pathways. The survival analysis showed that high expression of CCDC144NL antisense RNA 1 (CCDC144NL-AS1) and LINC01614 was positively correlated with the poor prognosis of patients with gastric cancer. The in vitro validation results showed that CCDC144NL-AS1 and LINC01614 were both up-regulated in the gastric cancer cells. Silence of CCDC144NL-AS1 and LINC01614 both significantly suppressed the cell proliferation and migration of gastric cancer cells, and also promoted the chemosensitivity of gastric cancer cells to 5-fluorouracil. Collectively, our results suggested that the newly identified two lncRNAs (CCDC144NL-AS1 and LINC01614) may act as oncogenes in gastric cancer.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 264
Author(s):  
Janson Tse ◽  
Thomas Pierce ◽  
Annalisa L. E. Carli ◽  
Mariah G. Alorro ◽  
Stefan Thiem ◽  
...  

MicroRNA-21 (miR-21) is a small, non-coding RNA overexpressed in gastric cancer and many other solid malignancies, where it exhibits both pro-and anti-tumourigenic properties. However, the pathways regulating miR-21 and the consequences of its inhibition in gastric cancer remain incompletely understood. By exploiting the spontaneous Stat3-dependent formation of inflammation-associated gastric tumors in Gp130F/F mice, we functionally established miR-21 as a Stat3-controlled driver of tumor growth and progression. We reconciled our discoveries by identifying several conserved Stat3 binding motifs upstream of the miR-21 gene promoter, and showed that the systemic administration of a miR-21-specific antisense oligonucleotide antagomir reduced the established gastric tumor burden in Gp130F/F mice. We molecularly delineated the therapeutic benefits of miR-21 inhibition with the functional restoration of PTEN in vitro and in vivo, alongside an attenuated epithelial-to-mesenchymal transition and the extracellular matrix remodeling phenotype of tumors. We corroborated our preclinical findings by correlating high STAT3 and miR-21 expression with the reduced survival probability of gastric cancer patients. Collectively, our results provide a molecular framework by which miR-21 mediates inflammation-associated gastric cancer progression, and establish miR-21 as a robust therapeutic target for solid malignancies characterized by excessive Stat3 activity.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Huaiming Sang ◽  
Weifeng Zhang ◽  
Lei Peng ◽  
Shuchun Wei ◽  
Xudong Zhu ◽  
...  

AbstractCircular RNAs (circRNAs) play a vital role in the occurrence and development of tumors, including gastric cancer (GC). However, there are still many circRNAs related to GC whose functions and molecular mechanisms remain undetermined. Herein, we discover circRNA RELL1, which has not been investigated in GC, and it is markedly downregulated in GC tissues, which is related with poor prognosis, more pronounced lymph node metastasis and poor TNM stage. After confirming the circular structure of circRELL1, we found that circRELL1 could block cell proliferation, invasion, migration, and anti-apoptosis in patients with GC by a series of in vivo and in vitro function-related studies. Further mechanism investigation demonstrated that circRELL1 could sponge miR-637 and indirectly unregulated the expression of EPHB3 via modulating autophagy activation in GC. Additionally, circRELL1 can be transmitted by exosomal communication, and exosomal circRELL1 suppressed the malignant behavior of GC in vivo and in vitro. Taken together, this study elucidates the suppressive roles of circRELL1/miR-637/EPHB3 axis through autophagy activation in GC progression, inspiring for further understanding of the underlying molecular mechanisms of GC and providing a promising novel diagnostic circulating biomarker and therapeutic target in GC.


Neoplasma ◽  
2021 ◽  
Author(s):  
Yan Wang ◽  
Jun-Qiang Li ◽  
Zhi-Liang Yang ◽  
Long Wang ◽  
Jun-Chang Zhang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dong-Liang Chen ◽  
Hui Sheng ◽  
Dong-Sheng Zhang ◽  
Ying Jin ◽  
Bai-Tian Zhao ◽  
...  

Abstract Background Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. Methods A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. Results circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. Conclusions Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.


Sign in / Sign up

Export Citation Format

Share Document