scholarly journals Influences of chemical compositions and heat treatment on the magnetic properties of high permeability Ni-Mn-Cu-Fe alloys.

DENKI-SEIKO ◽  
1985 ◽  
Vol 56 (3) ◽  
pp. 178-184
Author(s):  
Toshihiro Kato ◽  
Shinichiro Yahagi
2018 ◽  
Vol 44 ◽  
pp. 00072
Author(s):  
Nikolay Razumov ◽  
Aleksandr Verevkin

The effect of heat treatment on the structure and magnetic properties of Sm-Fe alloys obtained by mechanical alloying was investigated. The crystallization temperature of Sm2Fe17, an amorphous alloy obtained by mechanical alloying, was determined using differential scanning calorimetry. Based on these results, various samples were annealed at different isothermal holding temperatures, and those with the best magnetic properties were found. Experimental studies show that decreasing the isothermal holding temperature from 750 °C to 630 °C increases magnetic characteristics nearly four times. The saturation magnetization, romance and coercivity of the Sm2Fe17 powder were 121 emu/g, 28.5 emu/g and 800 Oe, respectively.


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-650-C8-653 ◽  
Author(s):  
K. H.J. Buschow ◽  
P. G. Van Engen

Alloy Digest ◽  
1976 ◽  
Vol 25 (11) ◽  

Abstract METGLAS Alloy 2826 (Fe40Ni40P14B6) is a ferromagnetic, high permeability, nickel-iron metallic glass which, when appropriately annealed, yields a material similar to the higher nickel containing permalloys in magnetic properties. Alloy 2826 is a single phase, opaque metallic material with a glass-like structure obtained by a very rapid quench from the liquid state. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: Ni-235. Producer or source: Allied Chemical Corporation.


2020 ◽  
Vol 121 (10) ◽  
pp. 961-967
Author(s):  
E. A. Stepanova ◽  
S. O. Volchkov ◽  
V. A. Lukshina ◽  
D. A. Shishkin ◽  
D. M. Khudyakova ◽  
...  

AIP Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 056012 ◽  
Author(s):  
Daniel R. Brown ◽  
Ke Han ◽  
Theo Siegrist ◽  
Tiglet Besara ◽  
Rongmei Niu

2007 ◽  
Vol 26-28 ◽  
pp. 531-534
Author(s):  
B.M. Moon ◽  
Bong Hwan Kim ◽  
Je Sik Shin ◽  
Sang Mok Lee

For thin-walled casting development of austempered ductile iron (ADI), permanent mold casting and accompanied heat treatment practice were systematically investigated to suppress and/or remove chill defects of ductile cast iron (DCI) with various thickness of 2 to 9 mm and to ensure mechanical properties of the final ADI casting. Si content was increased up to 3.8% to reduce the chill formation tendency under a high cooling rate. The residual Mg content remarkably affected the nodule count, while the nodule size and spherodization were proven to have weak relationships. Austenitizing process followed by austempering was very sensitive to chemical compositions (Si and Sn) and heat treatment temperature. As a practical application, the steel bar coupler for a structural frame was tried to produce without subsequent machining.


Sign in / Sign up

Export Citation Format

Share Document