Effect of heat treatment in a field of elastic stresses on the magnetic properties of Cu?Ni?Fe alloys

1979 ◽  
Vol 21 (4) ◽  
pp. 306-308 ◽  
Author(s):  
M. A. Libman ◽  
N. N. Potapov
2018 ◽  
Vol 44 ◽  
pp. 00072
Author(s):  
Nikolay Razumov ◽  
Aleksandr Verevkin

The effect of heat treatment on the structure and magnetic properties of Sm-Fe alloys obtained by mechanical alloying was investigated. The crystallization temperature of Sm2Fe17, an amorphous alloy obtained by mechanical alloying, was determined using differential scanning calorimetry. Based on these results, various samples were annealed at different isothermal holding temperatures, and those with the best magnetic properties were found. Experimental studies show that decreasing the isothermal holding temperature from 750 °C to 630 °C increases magnetic characteristics nearly four times. The saturation magnetization, romance and coercivity of the Sm2Fe17 powder were 121 emu/g, 28.5 emu/g and 800 Oe, respectively.


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-650-C8-653 ◽  
Author(s):  
K. H.J. Buschow ◽  
P. G. Van Engen

2020 ◽  
Vol 121 (10) ◽  
pp. 961-967
Author(s):  
E. A. Stepanova ◽  
S. O. Volchkov ◽  
V. A. Lukshina ◽  
D. A. Shishkin ◽  
D. M. Khudyakova ◽  
...  

AIP Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 056012 ◽  
Author(s):  
Daniel R. Brown ◽  
Ke Han ◽  
Theo Siegrist ◽  
Tiglet Besara ◽  
Rongmei Niu

2010 ◽  
Vol 638-642 ◽  
pp. 1743-1748
Author(s):  
G.J. Chen ◽  
Y.H. Shih ◽  
Jason S.C. Jang ◽  
S.R. Jian ◽  
P.H. Tsai ◽  
...  

In this study,the (FePt)94-xCu6Nbx (x=0, 2.87, 4.52, 5.67) alloy films were prepared by co-sputtering. The effects of Nb addition content and heat treatment on the microstructure and magnetic properties of the polycrystalline FePtCu films are reported. Our previous experiments showed that the ordering temperature of the (FePt)94Cu6 films reduced to 320 °C, which is much lower than that of the FePt alloy. However, the grain growth after heat treatment limited the practical application in recording media. By adding the Nb content in the (FePt)94Cu6 film, the grain sizes of the films can be adjusted from 50 to 18nm, even for the films annealed at temperature as high as 600°C. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, revealed that the addition of Nb enhanced the activation energy of ordering from 87 kJ/mol to 288 kJ/mol for the (FePt)94-xCu6Nbx (x=0 and 2.87, respectively) films. The reduction of the grain size and the corresponding increase in the activation energy of the Fe-Pt-Cu-Nb films might result from the precipitation of the Nb atoms around the ordering FePt phase. The (FePt)94-xCu6Nbx (x=2.87) film showed a coercive force of 13.4 kOe and the magnetization of 687 emu/cc.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 819
Author(s):  
Changsheng Li ◽  
Kun Li ◽  
Jingbo Dong ◽  
Jinyi Ren ◽  
Yanlei Song

The effect of aging on the precipitates, mechanical and magnetic properties of Fe-21Cr-15Ni-6Mn-Nb low magnetic stainless steel were investigated. The steel was aged at 550–750 °C for 2 h after solution heat treatment at 1100 °C for 1 h. During the aging treatment, the (Nb, V)(C, N) particles gradually precipitated in the grain, which were coherent or semi-coherent with the matrix. When the aging temperature was beyond 650 °C, the coarsening rate of (Nb, V)(C, N) particles increase rapidly and the coherent orientation between (Nb, V)(C, N) particles and the matrix was lost gradually. Meanwhile, coarse M23C6 was distributed at the grain boundary with chain shape, which was non-coherent with the matrix. The coarsening behavior of (Nb, V)(C, N) precipitates in the grain was analyzed, and the size of the particles precipitated after aging treatment at 650°C for different time was calculated and studied. After aging treatment at 650 °C for 2 h, the yield strength and tensile strength of the stainless steel was 705.6 MPa and 1002.3 MPa, the elongation and the relative magnetic permeability was 37.8% and 1.0035, respectively.


Sign in / Sign up

Export Citation Format

Share Document