Permanent Mold Casting Practice and Microstructure and Mechanical Properties of Thin-Sectioned ADI Casting

2007 ◽  
Vol 26-28 ◽  
pp. 531-534
Author(s):  
B.M. Moon ◽  
Bong Hwan Kim ◽  
Je Sik Shin ◽  
Sang Mok Lee

For thin-walled casting development of austempered ductile iron (ADI), permanent mold casting and accompanied heat treatment practice were systematically investigated to suppress and/or remove chill defects of ductile cast iron (DCI) with various thickness of 2 to 9 mm and to ensure mechanical properties of the final ADI casting. Si content was increased up to 3.8% to reduce the chill formation tendency under a high cooling rate. The residual Mg content remarkably affected the nodule count, while the nodule size and spherodization were proven to have weak relationships. Austenitizing process followed by austempering was very sensitive to chemical compositions (Si and Sn) and heat treatment temperature. As a practical application, the steel bar coupler for a structural frame was tried to produce without subsequent machining.

Alloy Digest ◽  
1962 ◽  
Vol 11 (8) ◽  

Abstract PERMOLD H.P. 15.5 is a high purity permanent mold casting alloy that produces excellent mechanical properties after heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Al-117. Producer or source: The Permold Company.


2014 ◽  
Vol 941-944 ◽  
pp. 89-92
Author(s):  
Ping Chen ◽  
Jian Min Zeng ◽  
Wu Kui Gan ◽  
Jin Bo Liu

A356 is a heat treatable cast alloy which has been widely applied in aviation and automobile industries. In this paper a Sb modified A356 alloy cast with permanent mold has been investigated in order to improve its mechanical properties by changing the needle morphology of the eutectic silicon. The results show that a small amount of Sb addition can contribute refined eutectic silicon morphology and enhance the mechanical properties, especially elongation of the A356 cast alloy poured in permanent molds. The optimal addition of Sb is 0.2 wt.%.


Alloy Digest ◽  
1982 ◽  
Vol 31 (11) ◽  

Abstract ALUMINUM 296.0 is an aluminum permanent-mold casting alloy that responds to an age-hardening heat treatment. It is recommended for applications that require a combination of high tensile properties and good machinability. Among its many uses are fuel pump bodies, aircraft fittings and seat frames for railway passengers cars. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-241. Producer or source: Various aluminum companies. See also Alloy Digest Al-261, October 1985.


Alloy Digest ◽  
1969 ◽  
Vol 18 (11) ◽  

Abstract Aluminum A356 is a sand and permanent mold casting alloy that responds to an age-hardening heat treatment. It is recommended for aircraft and missile components where high strength and corrosion resistance are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on heat treating, machining, and joining. Filing Code: Al-192. Producer or source: Aluminum Company of America.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


2006 ◽  
Vol 317-318 ◽  
pp. 323-326 ◽  
Author(s):  
D.J. Park ◽  
S.H. Kim ◽  
J.H. Lee ◽  
Seong Hee Lee ◽  
Yong Ho Choa

Anodic aluminum oxide (AAO) was prepared in three types of aqueous solutions with various applied voltage. The mechanical property of AAO prepared in different electrolyte was investigated and hardness was increased on account of the increase of the thickness between pores. The mechanical property and microstructure change of AAO prepared in oxalic acid at 40V was investigated by heat treatment. AAO prepared in oxalic acid at 40V was transformed from amorphous to crystalline phase by heat treatment above 800oC and hardness was increased about 2.6 times with increase of heat treatment temperature.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Raffmetal EN AB-Al Si7Mg0.3 (EN AB-42100) is a heat-treatable, Al-Si-Mg casting alloy in ingot form for remelting. It is used extensively for producing sand, permanent mold and investment castings for applications requiring a combination of excellent casting characteristics, high strength with good elongation, and good corrosion resistance. This alloy can be produced to a wide range of mechanical properties by making small adjustments to the magnesium content and/or heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-480. Producer or source: Raffmetal S.p.A.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1403 ◽  
Author(s):  
Lifen Tong ◽  
Xiting Lei ◽  
Guangyao Yang ◽  
Xiaobo Liu

A novel poly(arylene ether nitrile) terminated with hydroxyl groups (PEN–OH) was synthesized successfully. The effects of heat-treatment temperature on the thermal properties, mechanical properties, and dielectric properties of the PEN–OH films were studied in detail. Due to the cross-linking reaction occurring, at high temperature, among the nitrile groups on the side of the PEN–OH main chain to form a structurally stable triazine ring, the structure of materials changes from a linear structure to a bulk structure. Thus, the thermal properties and mechanical properties were improved. In addition, the occurrence of cross-linking reactions can reduce the polar groups in the material, leading to the decrease of dielectric constant. As the heat-treatment temperature increased, the glass-transition temperature increased from 180.6 °C to 203.6 °C, and the dielectric constant decreased from 3.4 to 2.8 at 1 MHz. Proper temperature heat-treatment could improve the tensile strength, as well as the elongation, at the break of the PEN–OH films. Moreover, because of the excellent adhesive property of PEN–OH to copper foil, a double-layer flexible copper clad laminate (FCCL) without any adhesives based on PEN–OH was prepared by a simple hot-press method, which possessed high peel strength with 1.01 N/mm. Therefore, the PEN–OH has potential applications in the electronic field.


Sign in / Sign up

Export Citation Format

Share Document