scholarly journals Mercury contents and speciation in soils and river waters of an industrialised catchment, the Thur river basin (Alsace). Contribution of the atmospheric deposition

Author(s):  
Sandrine Rémy ◽  
Jean-Luc Probst ◽  
Pascale Prudent ◽  
Gérard Krempp
1986 ◽  
Vol 21 (2) ◽  
pp. 251-256 ◽  
Author(s):  
Robert C. McCrea ◽  
Greg M. Wickware

Abstract Peatland waters of the Moose River basin, as well as surficial sediments and vascular plants of the estuary were sampled in 1982. Elevated levels of PCBs were found at all five peatland sites; concentrations ranged from 28 to 65 ng/L. Of the seventeen organochlorine pesticides investigated, the hexachlorocyclohexane isomers (a-and y-BHC) were the most prominent with total BHC concentrations ranging from 1.5 to 13.7 ng/L. The presence of these contaminants in ombrotrophic bogs indicated that there was atmospheric deposition of organochlorine contaminants in the basin. Analyses of surficial sediments, collected from tidal flats and coastal marshes, showed that PCBs and organochlorine pesticides were not present. Samples of Triglochin maritima L. seed heads and Typha latifolia L. roots were also free of PCBs.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 137-144 ◽  
Author(s):  
Josef Hejzlar ◽  
Vojtech Vyhnálek ◽  
Jirí Kopácek ◽  
Jirí Duras

Export and sources of P in the Vltava basin (subbasin of upper Elbe: total area – 28,093 km2; population density – 115 km−2; forests – 35%, farmland – 51%) were evaluated during 1972–1993. Annual export rates of total P from the basin to the river Elbe ranged between 38 and 68 kg km−2 a−1. Reservoirs with hydraulic retention times longer than 15 days were efficient traps for phosphorus retaining 20 to 30% of total P loading into the watercourses. Point sources (municipal wastewaters) were most important throughout the period and their share varied from approximately 60% in wet years to more than 90% in dry years. Export from diffuse sources (dominated by output from farmland) was highly dependent on discharge and fluctuaded between 5 and 40 kg km−2 a−1 in dry and wet years, respectively. Only about 2% of the P input into the basin from the fertilisation of farmland and from the atmospheric deposition was exported to the watercourses.


2016 ◽  
Vol 24 (4) ◽  
pp. 3882-3889 ◽  
Author(s):  
Xiaowei Wu ◽  
Yan Wang ◽  
Minmin Hou ◽  
Chunling Luo ◽  
Hongxia Zhao ◽  
...  

2010 ◽  
Vol 62 (11) ◽  
pp. 2550-2557 ◽  
Author(s):  
K. Kosaka ◽  
K. Fukui ◽  
M. Asami ◽  
M. Akiba

The presence of N-nitrosodimethylamine (NDMA) in the Hirose River and its tributaries, located in the upper Tone River basin, in the Kanto region of Japan, was investigated. NDMA was detected at high levels in the Arato River, one of the tributaries of the Hirose River, at high concentrations (up to 2,100 ng/L). Due to the confluence of the Arato River, NDMA concentration in the Hirose River increased (up to 61 ng/L). The NDMA in the Arato River was due to industrial discharge from a livestock processing plant located near the river. There were three discharges at the plant, with NDMA concentrations of 78, 11, and 33,000 ng/L. The industrial discharges from the livestock processing plant did not contain significant amounts of NDMA precursors on chloramination. On the other hand, sewage effluent was shown to contain NDMA precursors. The amounts of NDMA precursors in the sewage effluent that were rapidly transformed into NDMA were considered to be lower than those slowly transformed into NDMA.


2019 ◽  
Vol 01 (01) ◽  
pp. 12-18
Author(s):  
CHembarisov Elmir Ismailovich ◽  
Mirzakobulov ZHahongir Bahtiyarovich ◽  
Rahimova Matluba Naimovna ◽  
Rasulov Bahadyr Olim ◽  
Tillaeva Zarina Umarovna

The article considers the problems of irrigation water quality in Central Asia through hydroecological monitoring. Practical and scientific recommendations for solving these problems are offered. There are noted the necessity of development of scientific base of researches on all aspects of water quality and protection of water resources; adoption of laws and administrative documents on protection of waters and improvement of their quality; performance of various engineering, technological actions. The hydroecological state of surface waters of large irrigated areas of the Amudarya river basin was studied for regieon: Surkhandarya, Kashkadarya, Khorezm and irrigated zones of the Republic of Karakalpakstan. It is noted that the process of salinization of irrigated lands is dangerous for the region. According to the calculations 50...55 million tons of various salts are came to irrigated annually fields. This is the reason for the deterioration of the hydrological state of irrigated agriculture in the region.


Author(s):  

Urgency of the issues concerning studying water quality in mountain-glacial high-mountain regions of the Caucasus where the rivers feeding the Kabardino-Balkar Republic lowland parts originate has been highlighted. The Bezengiysky Canyon river waters have been investigated for Mn, Zn, Cu, Pb, Ag, Ni, Cr, and Cd content. The high-mountain glacial/mountain fed Cherek Bezengiysky River microelements’ concentration values have been compared from the source to the mouth both during winter low-water and glacial flood periods. It has been stated that river water microelements contamination in the high-mountain region is caused by natural geochemical and geo/morphological background and is connected with the microelements washing out mountain rocks. Earlier investigations have shown that the microelements concentration significantly drops in comparison with the upper reach when the river enters the lowlands. It was found that the Cherek Bezengiysky River waters under study in terms of Mn, Pb, Cr, Cd, Ni, Cu, and Ag content could be classified as clean water excluding Zn which made the water very polluted. Minimal, maximal and average values of the main ion and nitrogen-containing substances concentrations during winter low-water and glacial flood periods have been presented. The value of the conducted investigation is determined by the fact that the Cherek Bezengiysky River inflows to the Terek River and forms the Caspian Sea river basin.


Sign in / Sign up

Export Citation Format

Share Document