carbonate weathering
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 6)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuoma Yongji ◽  
Liuqian Zhao ◽  
Yunxiao Li ◽  
Longjun Zhang

The Tao He, Huang Shui, and Datong He originate from the northeastern margin of the Qinghai-Tibet Plateau (QTP) and flow into the Yellow River on the Loess Plateau (LP), all with a basin area exceeding 15,000 km2, and are the three largest tributaries of the Yellow River QTP sub-basin. Water samples were collected at the river outlets, the QTP section, the transition zone between the QTP and the LP, and the LP section of each river. These water samples were used to explore CO2 consumption by chemical weathering and its control mechanisms. Runoff and physical erosion are the main factors controlling chemical weathering in the three rivers. The increase of relief ratio in the transition zone between the QTP and the LP makes the chemical weathering particularly intense in this area. The total CO2 consumption rates by chemical weathering in the Tao He and Huang Shui transition zones are 1.4 times and 1.7 times greater than in their QTP sections, and 1.7 times and 2.3 times greater than in their LP sections, respectively. In contrast, due to the high relief ratio of 8‰ in the Datong He transition zone, the residence time of the water is extremely short, and unweathered fine-grained materials are delivered downstream to continue weathering. The influence of differential lithology distribution on chemical weathering includes that the Datong He QTP section with carbonate exposure presents the most intense carbonate weathering in that basin, and the Tao He transition zone has low silicate weathering resulting from the distribution of early Permian strata. In addition, groundwater recharge most likely influenced the silicate weathering of Huang Shui significantly. The total area of the three rivers accounts for 25% of the Yellow River QTP sub-basin, while their contribution to the total CO2 consumption flux by chemical weathering approximates 36%. The silicate weathering of the northern QTP rivers is lower than the global average and significantly lower than those of the southern QTP rivers. However, carbonate weathering of the QTP rivers exhibit no north-south regional differences.


2021 ◽  
Author(s):  
Nuria Basdediós ◽  
Zhilin Zhong ◽  
Yanhong Wu ◽  
Wolfgang Wilcke

Abstract Aims The retreat of glaciers is exposing new terrains to primary plant succession around the globe. To improve the understanding of vegetation development along a glacier retreat chronosequence, we (i) evaluated a possible link between base metal (Ca, Mg, K, Na) supply and vegetation establishment, (ii) determined the rates of the establishment of soil and plant base metal stocks, and (iii) estimated the size of the main base metal fluxes. Methods We determined base metal stocks in the soil organic layer, the mineral topsoil (0–10 cm), and in leaves/needles, trunk, bark, branches and roots of the dominating shrub and tree species and estimated fluxes of atmospheric deposition, plant uptake and leaching losses along the 127-yr Hailuogou chronosequence. Results Total ecosystem Ca and Mg stocks decreased along the chronosequence, while those of K and Na were unrelated with ecosystem age. Fortyfour and 30% of the initial stocks of Ca and Mg, respectively, were leached during the first 47 years, at rates of 130 ± 10.6 g m−2 year−1 Ca and 35 ± 3.1 g m−2 year−1 Mg. The organic layer accumulated at a mean rate of 288 g m−2 year−1 providing a bioavailable base metal stock, which was especially important for K cycling. Conclusions We suggest that the initial high Ca bioavailability because of a moderately alkaline soil pH and carbonate depletion in 47 years, together with the dissolution of easily-weatherable silicates providing enough Mg and K to the pioneer vegetation, contributed to the establishment of the mature forest in ca. 80 years.


2021 ◽  
pp. 120677
Author(s):  
Yang Xu ◽  
Zhangdong Jin ◽  
Long-Fei Gou ◽  
Albert Galy ◽  
Chenyang Jin ◽  
...  

2021 ◽  
Author(s):  
Xinhui He ◽  
Hong Zhou ◽  
Junwei Wan ◽  
Heng Zhao ◽  
Shiyi He

Abstract Qingjiang river is the second largest tributary of the Yangtze River in Hubei province, it’s also a typical karst catchment. Eighty-two important groundwater samples were collected during high and low water period of 2019. The results show that: (1) The major hydrochemistry types are Ca+Mg-HCO3 and Ca-HCO3, indicate that carbonate weathering is the main source of groundwater chemistry; (2) The results of inverse hydrochemical modeling show that there are two kinds of groundwater-carbonate rock interactions. One is co-dissolution of calcite and dolomite, the other is dedolomitization, and thereinto, dedolomitization is widespread in dolomite aquifers. Furthermore, gypsum has a tendency to dissolve in each aquifer, and the common ion effect of Ca2+ caused by gypsum dissolution promotes dedolomitization. The modeling results suggest that major elements have a good traceability effect on the material source of groundwater. (3) The chemical weathering of carbonate rock is mainly affected by carbonic acid, sulfuric acid and nitric acid. After modifying the impact of evaporite and atmospheric input, the calculations show that the contribution of carbonic acid involved in carbonate weathering is 70.9% (high water period) and 70.0% (low water period). Through statistics of karst springs discharge and contribution of acid involved in carbonate weathering, the two are in a positive relationship. The result can reflect the laws of sulfuric acid and nitric acid under the hydrodynamic condition in different seasons. Therefore, the carbonate weathering should be carefully evaluated in karst areas which have abundant groundwater and the role of groundwater in carbonate weathering is worthy of further study.


2021 ◽  
Vol 2 (1) ◽  
pp. 149-159
Author(s):  
Dmitry A. Novikov ◽  
Aleksandr N. Pyrayev ◽  
Fedor F. Dultsev ◽  
Anatoliy V. Chernykh ◽  
Anna F. Sukhorukova ◽  
...  

The paper presents the first data on the regional distribution of the isotopic composition of oxygen and hydrogen in waters, as well as the carbon of water-dissolved carbon dioxide in natural surface and underground infiltration waters of the Novosibirsk urban agglomeration. For the presented sample of samples, the vector of changes in the values of δD and δO in the studied region was obtained from -112 to -126 ‰ and from -14 to -16 ‰, respectively. The water-dissolved carbon dioxide of the studied waters has the expected biogenic genesis, the isotopic composition of carbon (δC from -14.0 to -7.0 ‰) indicates its participation in the processes of silicate-carbonate weathering.


2021 ◽  
Vol 18 (1) ◽  
pp. 55-75
Author(s):  
Hang Wen ◽  
Pamela L. Sullivan ◽  
Gwendolyn L. Macpherson ◽  
Sharon A. Billings ◽  
Li Li

Abstract. Carbonate weathering is essential in regulating atmospheric CO2 and carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics (e.g., depth and density distribution) modify flow paths and weathering. We address this knowledge gap using field data from and reactive transport numerical experiments at the Konza Prairie Biological Station (Konza), Kansas (USA), a site where woody encroachment into grasslands is surmised to deepen roots. Results indicate that deepening roots can enhance weathering in two ways. First, deepening roots can control thermodynamic limits of carbonate dissolution by regulating how much CO2 transports vertical downward to the deeper carbonate-rich zone. The base-case data and model from Konza reveal that concentrations of Ca and dissolved inorganic carbon (DIC) are regulated by soil pCO2 driven by the seasonal soil respiration. This relationship can be encapsulated in equations derived in this work describing the dependence of Ca and DIC on temperature and soil CO2. The relationship can explain spring water Ca and DIC concentrations from multiple carbonate-dominated catchments. Second, numerical experiments show that roots control weathering rates by regulating recharge (or vertical water fluxes) into the deeper carbonate zone and export reaction products at dissolution equilibrium. The numerical experiments explored the potential effects of partitioning 40 % of infiltrated water to depth in woodlands compared to 5 % in grasslands. Soil CO2 data suggest relatively similar soil CO2 distribution over depth, which in woodlands and grasslands leads only to 1 % to ∼ 12 % difference in weathering rates if flow partitioning was kept the same between the two land covers. In contrast, deepening roots can enhance weathering by ∼ 17 % to 200 % as infiltration rates increased from 3.7 × 10−2 to 3.7 m/a. Weathering rates in these cases however are more than an order of magnitude higher than a case without roots at all, underscoring the essential role of roots in general. Numerical experiments also indicate that weathering fronts in woodlands propagated > 2 times deeper compared to grasslands after 300 years at an infiltration rate of 0.37 m/a. These differences in weathering fronts are ultimately caused by the differences in the contact times of CO2-charged water with carbonate in the deep subsurface. Within the limitation of modeling exercises, these data and numerical experiments prompt the hypothesis that (1) deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep subsurface and (2) the hydrological impacts of rooting characteristics can be more influential than those of soil CO2 distribution in modulating weathering rates. We call for colocated characterizations of roots, subsurface structure, and soil CO2 levels, as well as their linkage to water and water chemistry. These measurements will be essential to illuminate feedback mechanisms of land cover changes, chemical weathering, global carbon cycle, and climate.


Sign in / Sign up

Export Citation Format

Share Document