Study on relationship of properties and drug release rate of hot melt pressure sensitive adhesive

Author(s):  
YU Zhenwei
2012 ◽  
Vol 506 ◽  
pp. 533-536
Author(s):  
Nanthida Wonglertnirant ◽  
S. Tipwichai ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk ◽  
...  

Ketoprofen transdermal patches (KTPs) were fabricated using an acrylic pressure sensitive adhesive (PSA) polymer. The influence of different factors (amount of PSA, drug content, and pressure applying on the backing membrane during preparation) on the characteristics of ketoprofen patch (thickness, W/A ratio, and adhesiveness of matrix film) and in vitro drug release behavior were investigated. The results revealed the successful fabrication and a good physical appearance of KTPs using acrylic PSA. Microscopic observations, FTIR spectra, and DSC thermograms were permitted to demonstrate that the drug was dispersed molecularly in the polymer. As the amount of PSA in the adhesive matrix was increased, the release rate of ketoprofen was decreased. Contrarily, the drug release rate was increased corresponding to the increase of ketoprofen content in the adhesive matrix. There was no significant difference in the release rate when the pressure applying on the backing membrane was varied. The kinetic of ketoprofen release from acrylic matrix type transdermal patches followed the Higuchis diffusion model.


Author(s):  
Nilam Patel ◽  
Rupal Jani

Conventional coating processes are based on aqueous or organic solvent system, resulting in the lengthy and tedious processes where use and removal of solvents consumes lots of energy and resources. Also, solvent disposal is a critical issue considering environmental hazard.Hot melt coating process avoids use of solvent and is short and energy-efficient process. Here, Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system to deliver highly water soluble Biopharmaceutical Classification System (BCS) class-I drug Levetiracetam. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of lipid and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus onHMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment Failure Mode and Effect analysis (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization by Central Composite Design (CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


Author(s):  
Nilam Patel ◽  
Rupal Jani

Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system for anti-epileptic drug Oxcarbazepine. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of solid lipid material and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus on HMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization (by CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Biomaterials ◽  
2001 ◽  
Vol 22 (21) ◽  
pp. 2857-2865 ◽  
Author(s):  
Giacomo Fontana ◽  
Mariano Licciardi ◽  
Silvana Mansueto ◽  
Domenico Schillaci ◽  
Gaetano Giammona

2020 ◽  
Vol 586 ◽  
pp. 119607
Author(s):  
Umberto M. Musazzi ◽  
Marco A. Ortenzi ◽  
Chiara G.M. Gennari ◽  
Antonella Casiraghi ◽  
Paola Minghetti ◽  
...  

2019 ◽  
Vol 95 (13-14) ◽  
pp. 1134-1145
Author(s):  
Xing Peng ◽  
Yu Wang ◽  
Hui Chen ◽  
Jie Ying ◽  
Jikui Wang

Sign in / Sign up

Export Citation Format

Share Document