Lymphocyte proliferation and antibody responses to Plasmodium falciparum liver-stage antigen-1 in a highland area of Kenya with seasonal variation in malaria transmission.

2002 ◽  
Vol 66 (4) ◽  
pp. 372-378 ◽  
Author(s):  
Chandy C John ◽  
John H Ouma ◽  
Peter O Sumba ◽  
Michael R Hollingdale ◽  
Chris L King ◽  
...  
2020 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins in order to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Our findings show that children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against the PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in the Gambia, as compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses show a negative correlation between antibody levels and malaria transmission intensity for two PHIST antigens, Pf3D7_1102500 and Pf3D7_1401600. However, we report a correlation in antibody responses between schizont extract and Pf3D7_0532400 (p=0.00582). Acquisition of anti-PHIST antibodies was correlated with exposure to malaria for PHISTb protein Pf3D7_0532400 (p=0.009) but not the other PHIST antigens Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels, but the responses do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore potential for these parasite antigens as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


2003 ◽  
Vol 71 (8) ◽  
pp. 4320-4325 ◽  
Author(s):  
Chandy C. John ◽  
Joseph S. Zickafoose ◽  
P. Odada Sumba ◽  
Christopher L. King ◽  
James W. Kazura

ABSTRACT Immunoglobulin G (IgG) antibodies to three vaccine candidate preerythrocytic Plasmodium falciparum antigens were evaluated in children and adults in an epidemic-prone highland area of Kenya during rainy (high-transmission) and dry (low-transmission) seasons. The frequencies and median levels of IgG antibodies to circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP) were compared to the frequencies and median levels of IgG antibodies to liver-stage antigen 1 (LSA-1) reported previously. The frequencies and median levels of IgG antibodies to CSP and TRAP were similar in children and adults in the rainy season, but they were lower in children than in adults in the dry season. The frequencies and median levels of antibodies to LSA-1 were lower in children than in adults in both the rainy and dry seasons. Antibodies to CSP and LSA-1 were primarily members of the IgG1 and IgG3 subclasses, while antibodies to TRAP were primarily members of the IgG3 and IgG4 subclasses. In a treatment-reinfection study following dry season testing, antibodies to TRAP were associated with a trend toward protection from infection in children (P = 0.051) but not in adults. Antibodies to LSA-1 and CSP did not correlate with protection in children or adults. In this highland area of Kenya with unstable transmission, IgG antibodies to preerythrocytic P. falciparum antigens vary in subjects by age and season, and the protective effects of these antibodies against infection may be different in adults and children.


2021 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in Gambia, compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses indicate negative correlation between antibody levels and malaria transmission intensity for Pf3D7_1102500 and Pf3D7_1401600. We report a correlation in antibody responses between schizont and gametocyte extract, but this is not statistically significant (cor=0.102, p=0.2851, CI=95%) and, Pf3D7_0532400 (cor=0.11, p=0.249, CI=95%) and Pf3D7_1401600 (cor=0.02, p=0.7968, CI=95%). We report a negative correlation in antibody responses between schizont and Pf3D7_1102500 (cor=-0.008, p=0.9348, CI=95%). There is a correlation between gametocyte extract and Pf3D7_1401600 (cor=-0.0402, p=0.6735, CI=95%), Pf3D7_1102500 (cor=0.0758, p=0.4271, CI=95%) and Pf3D7_0532400 (cor=0.155, p=0.1028, CI=95%). Acquisition of anti-PHIST antibodies correlates with exposure to malaria for Pf3D7_0532400 (p=0.009) but not Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels which do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore their potential as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Brian R. Omondi ◽  
Michelle K. Muthui ◽  
William I. Muasya ◽  
Benedict Orindi ◽  
Ramadhan S. Mwakubambanya ◽  
...  

BackgroundMalaria caused by Plasmodium falciparum remains a serious global public health challenge especially in Africa. Interventions that aim to reduce malaria transmission by targeting the gametocyte reservoir are key to malaria elimination and/or eradication. However, factors that are associated with gametocyte carriage have not been fully explored. Consequently, identifying predictors of the infectious reservoir is fundamental in the elimination campaign.MethodsWe cultured P. falciparum NF54 gametocytes (to stage V) and prepared crude gametocyte extract. Samples from a total of 687 participants (aged 6 months to 67 years) representing two cross-sectional study cohorts in Kilifi, Kenya were used to assess IgG antibody responses by ELISA. We also analyzed IgG antibody responses to the blood-stage antigen AMA1 as a marker of asexual parasite exposure. Gametocytemia and asexual parasitemia data quantified by microscopy and molecular detection (QT-NASBA) were used to determine the relationship with antibody responses, season, age, and transmission setting. Multivariable logistic regression models were used to study the association between antibody responses and gametocyte carriage. The predictive power of the models was tested using the receiver operating characteristic (ROC) curve.ResultsMultivariable logistic regression analysis showed that IgG antibody response to crude gametocyte extract predicted both microscopic (OR=1.81 95% CI: 1.06–3.07, p=0.028) and molecular (OR=1.91, 95% CI: 1.11–3.29, p=0.019) P. falciparum gametocyte carriage. Antibody responses to AMA1 were also associated with both microscopic (OR=1.61 95% CI: 1.08–2.42, p=0.020) and molecular (OR=3.73 95% CI: 2.03–6.74, p<0.001) gametocytemia. ROC analysis showed that molecular (AUC=0.897, 95% CI: 0.868–0.926) and microscopic (AUC=0.812, 95% CI: 0.758–0.865) multivariable models adjusted for gametocyte extract showed very high predictive power. Molecular (AUC=0.917, 95% CI: 0.891–0.943) and microscopic (AUC=0.806, 95% CI: 0.755–0.858) multivariable models adjusted for AMA1 were equally highly predictive.ConclusionIn our study, it appears that IgG responses to crude gametocyte extract are not an independent predictor of gametocyte carriage after adjusting for AMA1 responses but may predict gametocyte carriage as a proxy marker of exposure to parasites. Serological responses to AMA1 or to gametocyte extract may facilitate identification of individuals within populations who contribute to malaria transmission and support implementation of transmission-blocking interventions.


2009 ◽  
Vol 77 (3) ◽  
pp. 1189-1196 ◽  
Author(s):  
Aissatou Toure-Balde ◽  
Blanca-Liliana Perlaza ◽  
Jean-Pierre Sauzet ◽  
Mouhamadou Ndiaye ◽  
Georgette Aribot ◽  
...  

ABSTRACT Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.


Sign in / Sign up

Export Citation Format

Share Document