Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

Author(s):  
Hisaya Hattori ◽  
Yasunori Sogawa ◽  
Nobuhiro Yanagisawa ◽  
Mitsuru Hosoya ◽  
Takeshi Shoji ◽  
...  
2019 ◽  
Vol 176 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Michael WEIßNER ◽  
Frank BEGER ◽  
Martin SCHÜTTENHELM ◽  
Gunesh TALLU

Current and further developing CO2- and emission regulations worldwide and the competition to full electric mobility deliver a chal-lenge for internal combustion engines in general. A state of the art solution is the use of natural gas mainly contending methane to reduce CO2 significantly and to offer lowest emission levels. The EU-funded project GasOn developed engine concepts to fully exploit the advantages of CNG. This article describes the development of an innovative, monovalent engine dedicated to Compressed Natural Gas (CNG) and characterised by the lean burn concept and the innovative pre-chamber combustion.


2014 ◽  
Vol 118 (1204) ◽  
pp. 557-599 ◽  
Author(s):  
J. J. McGuirk

Abstract The components of an aeroengine gas-turbine combustor have to perform multiple tasks – control of external and internal air distribution, fuel injector feed, fuel/air atomisation, evaporation, and mixing, flame stabilisation, wall cooling, etc. The ‘rich-burn’ concept has achieved great success in optimising combustion efficiency, combustor life, and operational stability over the whole engine cycle. This paper first illustrates the crucial role of aerodynamic processes in achieving these performance goals. Next, the extra aerodynamic challenges of the ‘lean-burn’ injectors required to meet the ever more stringent NO x emissions regulations are introduced, demonstrating that a new multi-disciplinary and ‘whole system’ approach is required. For example, high swirl causes complex unsteady injector aerodynamics; the threat of thermo-acoustic instabilities means both aerodynamic and aeroacoustic characteristics of injectors and other air admission features must be considered; and high injector mass flow means potentially strong compressor/combustor and combustor/turbine coupling. The paper illustrates how research at Loughborough University, based on complementary use of advanced experimental and computational methods, and applied to both isolated sub-components and fully annular combustion systems, has improved understanding and identified novel ideas for combustion system design.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121411
Author(s):  
Ayat Gharehghani ◽  
Kasra Ghasemi ◽  
Majid Siavashi ◽  
Sadegh Mehranfar

2019 ◽  
Author(s):  
Evgeniy Shapiro ◽  
Nick Tiney ◽  
Panagiotis Kyrtatos ◽  
Maria Kotzagianni ◽  
Michele Bolla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document