The aerodynamic challenges of aeroengine gas-turbine combustion systems

2014 ◽  
Vol 118 (1204) ◽  
pp. 557-599 ◽  
Author(s):  
J. J. McGuirk

Abstract The components of an aeroengine gas-turbine combustor have to perform multiple tasks – control of external and internal air distribution, fuel injector feed, fuel/air atomisation, evaporation, and mixing, flame stabilisation, wall cooling, etc. The ‘rich-burn’ concept has achieved great success in optimising combustion efficiency, combustor life, and operational stability over the whole engine cycle. This paper first illustrates the crucial role of aerodynamic processes in achieving these performance goals. Next, the extra aerodynamic challenges of the ‘lean-burn’ injectors required to meet the ever more stringent NO x emissions regulations are introduced, demonstrating that a new multi-disciplinary and ‘whole system’ approach is required. For example, high swirl causes complex unsteady injector aerodynamics; the threat of thermo-acoustic instabilities means both aerodynamic and aeroacoustic characteristics of injectors and other air admission features must be considered; and high injector mass flow means potentially strong compressor/combustor and combustor/turbine coupling. The paper illustrates how research at Loughborough University, based on complementary use of advanced experimental and computational methods, and applied to both isolated sub-components and fully annular combustion systems, has improved understanding and identified novel ideas for combustion system design.

1982 ◽  
Vol 104 (1) ◽  
pp. 52-57 ◽  
Author(s):  
S. J. Anderson ◽  
M. A. Friedman ◽  
W. V. Krill ◽  
J. P. Kesselring

Catalytically supported thermal combustion can provide low NOx emissions with gaseous and distillate fuels while maintaining high combustion efficiency. For stationary gas turbines, catalytic combustion may be the only emerging technology that can cost effectively meet recent federal regulations for NOx emissions. Under EPA sponsorship, a small-scale, catalytic gas turbine combustor was developed to evaluate transient and steady state combustor performance. The combustor consisted of a multiple air-atomizing fuel injector, an opposed jet igniter, and a graded-cell monolithic reactor. System startup, including opposed jet ignition and catalyst stabilization, was achieved in 250 seconds. This time interval is comparable to conventional gas turbines. Steady state operation was performed at 0.505 MPa (5 atmospheres) pressure and 15.3 m/s (50 ft/s) reference velocities. Thermal NOx emissions were measured below 10 ppmv, while fuel NOx conversion ranged from 75 to 95 percent. At catalyst bed temperatures greater than 1422K (2100°F), total CO and UHC emissions were less than 50 ppmv indicating combustion efficiency greater than 99.9 percent. Compared with conventional gas turbine combustors, the catalytic reactor operates only within a relatively narrow range of fuel/air ratios. As a result, modified combustor air distribution or fuel staging will be required to achieve the wide turndown required in large stationary systems.


Author(s):  
Haoyang Liu ◽  
Wenkai Qian ◽  
Min Zhu ◽  
Suhui Li

Abstract To avoid flashback issues of the high-H2 syngas fuel, current syngas turbines usually use nonpremixed combustors, which have high NOx emissions. A promising solution to this dilemma is rich-burn, quick-mix, lean-burn (RQL) combustion, which not only reduces NOx emissions but also mitigates flashback. This paper presents a kinetics modeling study on NOx emissions of a syngas–fueled gas turbine combustor using RQL architecture. The combustor was simulated with a chemical reactor network (CRN) model in chemkin-pro software. The combustion and NOx formation reactions were modeled using a detailed kinetics mechanism that was developed for syngas. Impacts of combustor design/operating parameters on NOx emissions were systematically investigated, including combustor outlet temperature, rich/lean air flow split, and residence time split. The mixing effects in both the rich-burn zone and the quick-mix zone were also investigated. Results show that for an RQL combustor, the NOx emissions initially decrease and then increase with combustor outlet temperature. The leading parameters for NOx control are temperature-dependent. At typical modern gas turbine combustor operating temperatures (e.g., <1890 K), the air flow split is the most effective parameter for NOx control, followed by the mixing at the rich-burn zone. However, as the combustor outlet temperature increases, the impacts of air flow split and mixing in the rich-burn zone on NOx reduction become less pronounced, whereas both the residence time split and the mixing in the quick-mix zone become important.


2008 ◽  
Vol 2 (1) ◽  
pp. 61
Author(s):  
Mohammad Nazri ◽  
Mohd. Jaafar

A two-stage lean/lean gas turbine combustor was developed with low NOx characteristics in each stage using a small radial swirler of 40-mm outlet diameter in the pilot stage. Both flame tubes were arranged in series with the smaller combustor (76 mm inside diameter) as the pilot stage and the larger combustor (140 mm inside diameter) as the main stage. The pilot stage was fuelled via vane passage fuel injector, while the main stage was fuelled around the wall of the exit plane of the pilot stage, using wall fuel injectors. Low NOx emissions were obtained when using fuel staging for methane fuel, as low as 6 ppm. A NO. reduction of more than 40 % was obtained at equivalence ratio of near 0.7, when using fuel staging compared to the non-fuel-staging test. Tests were conducted using methane as fuel. This was achieved at very small increase in carbon monoxide emissions especially near the rich region and with almost no increase at all in the unburned hydrocarbon emissions at the same equivalence ratio.Keywords: NOx emissions, fuel staging, carbon monoxide, swirler.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


1987 ◽  
Vol 109 (3) ◽  
pp. 313-318 ◽  
Author(s):  
M. Novack ◽  
G. Roffe ◽  
G. Miller

Thermal preconditioning is a process in which coal/water mixtures are vaporized to produce coal/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of an experimental program in which thermally preconditioned coal/water mixture was successfully burned with a stable flame in a gas turbine combustor test rig. Tests were performed at a mixture flowrate of 300 lb/hr and combustor pressure of 8 atm. The coal/water mixture was thermally preconditioned and injected into the combustor over a temperature range from 350°F to 600°F, and combustion air was supplied at between 600°F to 725°F. Test durations varied between 10 and 20 min. Major results of the combustion testing were that: A stable flame was maintained over a wide equivalence ratio range, between φ = 2.2 (rich) and 0.2 (lean); and combustion efficiency of over 99 percent was achieved when the mixture was preconditioned to 600°F and the combustion air preheated to 725°F. Measurements of ash particulates, captured in the exhaust sampling probe located 20 in. from the injector face, show typical sizes collected to be about 1 μm, with agglomerates of these particulates to be not more than 8 μm. The original mean coal particle size for these tests, prior to preconditioning, was 25 μm. Results of additional tests showed that one third of the sulfur contained in the solids of a coal/water mixture with 3 percent sulfur was evolved in gaseous form (under mild thermolized conditions) mainly as H2S with the remainder as light mercaptans.


Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


2001 ◽  
Vol 123 (3) ◽  
pp. 574-579 ◽  
Author(s):  
M. Y. Leong ◽  
C. S. Smugeresky ◽  
V. G. McDonell ◽  
G. S. Samuelsen

Designers of advanced gas turbine combustors are considering lean direct injection strategies to achieve low NOx emission levels. In the present study, the performance of a multipoint radial airblast fuel injector Lean Burn injector (LBI) is explored for various conditions that target low-power gas turbine engine operation. Reacting tests were conducted in a model can combustor at 4 and 6.6 atm, and at a dome air preheat temperature of 533 K, using Jet-A as the liquid fuel. Emissions measurements were made at equivalence ratios between 0.37 and 0.65. The pressure drop across the airblast injector holes was maintained at 3 and 7–8 percent. The results indicate that the LBI performance for the conditions considered is not sufficiently predicted by existing emissions correlations. In addition, NOx performance is impacted by atomizing air flows, suggesting that droplet size is critical even at the expense of penetration to the wall opposite the injector. The results provide a baseline from which to optimize the performance of the LBI for low-power operation.


Author(s):  
N. Y. Sharma ◽  
S. K. Som

The practical challenges in research in the field of gas turbine combustion mainly centre around a clean emission, a low liner wall temperature and a desirable exit temperature distribution for turboma-chinery applications, along with fuel economy of the combustion process. An attempt has been made in the present paper to develop a computational model based on stochastic separated flow analysis of typical diffusion-controlled spray combustion of liquid fuel in a gas turbine combustor to study the influence of fuel volatility at different combustor pressures and inlet swirls on combustion and emission characteristics. A κ-ɛ model with wall function treatment for the near-wall region has been adopted for the solution of conservation equations in gas phase. The initial spray parameters are specified by a suitable probability distribution function (PDF) size distribution and a given spray cone angle. A radiation model for the gas phase, based on the first-order moment method, has been adopted in consideration of the gas phase as a grey absorbing-emitting medium. The formation of thermal NO x as a post-combustion reaction process is determined from the Zeldovich mechanism. It has been recognized from the present work that an increase in fuel volatility increases combustion efficiency only at higher pressures. For a given fuel, an increase in combustor pressure, at a constant inlet temperature, always reduces the combustion efficiency, while the influence of inlet swirl is found to decrease the combustion efficiency only at higher pressure. The influence of inlet pressure on pattern factor is contrasting in nature for fuels with lower and higher volatilities. For a higher-volatility fuel, a reduction in inlet pressure decreases the value of the pattern factor, while the trend is exactly the opposite in the case of fuels with lower volatilities. The NOx emission level increases with decrease in fuel volatility at all combustor pressures and inlet swirls. For a given fuel, the NOx emission level decreases with a reduction in combustor pressure and an increase in inlet swirl number.


1975 ◽  
Author(s):  
S. J. Markowski ◽  
R. P. Lohmann ◽  
R. S. Reilly

The vorbix burner (acronym for Vortex Burning and Mixing) represents a new approach to a practical gas turbine combustor design. The concept exploits the Rayleigh instability of swirling flows to enhance the mixing and combustion rates. The combination of a two-stage fuel system with a piloted combustor leads to a unique high rate technique for fuel prevaporization within the combustor proper. This paper presents the fundamental concepts in the definition of the vorbix combustor and the results of exploratory tests conducted on can (tubular) and annular vorbix combustors. The results indicate that this type of combustor has unique performance characteristics that include excellent stability and high combustion efficiency over wide excursions in operating fuel air ratios in addition to substantially reduced emission levels during high power operation.


Sign in / Sign up

Export Citation Format

Share Document