Hybrid 2-Zone Diesel Combustion Model for NO Formation

2009 ◽  
Vol 2 (2) ◽  
pp. 584-596 ◽  
Author(s):  
Klaus S. Oppenauer ◽  
Luigi del Re
Author(s):  
F. Wang ◽  
Y. Huang ◽  
L. X. Zhou ◽  
C. X. Xu ◽  
J. Cao

If the instantaneous chemistry reaction rate is taken as ws = Bρ2Y1Y2 exp(−E/RT) = ρ2Y1Y2K, here K is a contraction for the exponential term. Then, ignoring the three order fluctuation correlation term, the average reaction rate could be ws = ρ2(Y1Y2K + Y1′Y2′K + Y1K′Y2′ + Y2K′Y1′). The authors have simulated jet combustion and swirl combustion using this kind of second order moment (SOM) turbulent combustion model. The predictions are close to experimental data in most regions. In order to improve the SOM turbulent combustion model, the effect of various correlation moments in the simulation of turbulent swirl combustion and NO formation is studied by comparing different SOM turbulence-chemistry models, including the unified second-order moment (USM) model, the model accounting for only the time-averaged reaction-rate coefficient, the model accounting for only the concentration fluctuation and the model accounting for both the time-averaged reaction-rate coefficient and the concentration fluctuation. These models are incorporated into the FLUENT code for a methane-air swirling combustion and NO formation under various swirl numbers. The magnitude of various correlations and their effect on the time-averaged reaction rate are analyzed, and the simulation results are compared with the corresponding measurement results. The results showed that the USM model gives the best agreement with the experimental results and among various correlation moments the correlation of reaction-rate coefficient fluctuation with the concentration fluctuation is most important. Additionally, a direct numerical simulation (DNS) of three-dimensional channel turbulent reacting flows with consideration of buoyancy effect using a spectral method was carried out. The statistical results are shown that K′Y′ are larger than Y1′Y2′.


2009 ◽  
Vol 2009.84 (0) ◽  
pp. _4-2_
Author(s):  
Ryo YAMAMOTO ◽  
Hiroshi KAWANABE ◽  
Takuji ISHIYAMA

2000 ◽  
Vol 123 (4) ◽  
pp. 832-838 ◽  
Author(s):  
D. E. Bohn ◽  
J. Lepers

This paper presents the application of a detailed combustion model for turbulent premixed combustion to a swirl-stabilized premix burner. Computations are carried out for atmospheric pressure and elevated pressure of 9 atm. Results of computations for atmospheric pressure are compared to experimental data. The combustion model is of the joint-pdf type. The model is based on the characteristics of turbulent combustion under conditions typical for gas turbine burners. It incorporates a systematically reduced six-step reaction mechanism yielding direct computation of radical concentrations via transport equations or steady-state assumptions. The model is able to simulate combustion of fuel gases containing methane, carbon monoxide, hydrogen, carbon dioxide, and water. It is therefore applicable to both methane and low-BTU fuel gas combustion. Based on computed radical concentrations, a post-processor for NOx formation is applied. This post-processor considers thermal formation of nitrogen oxides and NO formation via the nitrous oxide path.


2012 ◽  
Vol 13 (6) ◽  
pp. 531-539 ◽  
Author(s):  
José María Desantes ◽  
José Javier López ◽  
Pau Redón ◽  
Jean Arrégle

2018 ◽  
Vol 53 (3) ◽  
pp. 330-335
Author(s):  
Yoichi Niki ◽  
Yoshifuru Nitta ◽  
Sumito Nishio ◽  
Koichi Hirata

2019 ◽  
Vol 21 (1) ◽  
pp. 101-121 ◽  
Author(s):  
Jose M Desantes ◽  
Jose M Garcia-Oliver ◽  
Ricardo Novella ◽  
Leonardo Pachano

The role of nozzle diameter on diesel combustion is studied by performing computational fluid dynamics calculations of Spray A and Spray D from the Engine Combustion Network. These are well-characterized single-hole sprays in a quiescent environment chamber with thermodynamic conditions representative of modern diesel engines. First, the inert spray evolution is described with the inclusion of the concept of mixing trajectories and local residence time into the analysis. Such concepts enable the quantification of the mixing rate, showing that it decreases with the increase in nozzle diameter. In a second step, the reacting spray evolution is studied focusing on the local heat release rate distribution during the auto-ignition sequence and the quasi-steady state. The capability of a well-mixed-based and a flamelet-based combustion model to predict diesel combustion is also assessed. On one hand, results show that turbulence–chemistry interaction has a profound effect on the description of the reacting spray evolution. On the other hand, the mixing rate, characterized in terms of the local residence time, drives the main changes introduced by the increase of the nozzle diameter when comparing Spray A and Spray D.


Sign in / Sign up

Export Citation Format

Share Document