Flow Field Measurements inside a Piston Bowl of a Heavy-Duty Diesel Engine

Author(s):  
Harri Hillamo ◽  
Teemu Anttinen ◽  
Ulf Aronsson ◽  
Clément Chartier ◽  
Oivind Andersson ◽  
...  
Author(s):  
Yu Zhang ◽  
Yuanjiang Pei ◽  
Meng Tang ◽  
Michael Traver

Abstract This study computationally investigates the potential of utilizing gasoline compression ignition (GCI) in a heavy-duty diesel engine to address a future ultra-low tailpipe NOx standard of 0.027 g/kWh while achieving high fuel efficiency. By conducting closed-cycle, full-geometry, 3-D computational fluid dynamics (CFD) combustion simulations, the effects of piston bowl geometry, injector spray pattern, and swirl ratio (SR) were investigated for a market gasoline. The simulations were performed at 1375 rpm over a load range from 5 to 15 bar BMEP. The engine compression ratio (CR) was increased from 15.7 used in previous work to 16.5 for this study. Two piston bowl concepts were studied with Design 1 attained by simply scaling from the baseline 15.7 CR piston bowl, and Design 2 exploring a wider and shallower combustion chamber design. The simulation results predicted that through a combination of the wider and shallower piston bowl design, a 14-hole injector spray pattern, and a swirl ratio of 1, Design 2 would lead to a 2–7% indicated specific fuel consumption (ISFC) improvement over the baseline by reducing the spray-wall interactions and lowering the in-cylinder heat transfer loss. Design 1 (10-hole and SR2) showed a more moderate ISFC reduction of 1–4% by increasing CR and the number of nozzle holes. The predicted fuel efficiency benefit of Design 2 was found to be more pronounced at low to medium loads.


2021 ◽  
Author(s):  
Meng Tang ◽  
Yuanjiang Pei ◽  
Hengjie Guo ◽  
Yu Zhang ◽  
Roberto Torelli ◽  
...  

2020 ◽  
Author(s):  
Zexian Guo ◽  
Xin He ◽  
Yuanjiang Pei ◽  
Chen-Teng Chang ◽  
Peng Wang ◽  
...  

Author(s):  
Oladapo Adeniyi

Today, due to increased efficiency of heavy-duty diesel engines in the global industry, discussion of the performance of these motors, including higher efficiency and lower emissions, is very important. Several methods exist to meet these demands by the diesel engine. Piston bowl geometry deformation strategy is a reliable method for achieving pollutants of lower nitrogen oxides (Nox) and soot and higher yield. This paper has used Converge software to model the CFD for the performance of a Caterpillar 3401 engine with three different piston bowl geometries and various depths and chamfers for one of the geometries. The compression, inlet temperature, and pressure ratio are assumed to be constant. The results of efficiency and pollution of the engine are presented at all stages for analysis, comparisons, and conclusions. The results show that the cylindrical piston bowl geometry has a proper performance in terms of efficiency and the pollutions produced.


2021 ◽  
Vol 156 ◽  
pp. 105781
Author(s):  
Louise Gren ◽  
Vilhelm B. Malmborg ◽  
John Falk ◽  
Lassi Markula ◽  
Maja Novakovic ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 209-226 ◽  
Author(s):  
Takuya Yamaguchi ◽  
Yuzo Aoyagi ◽  
Noboru Uchida ◽  
Akira Fukunaga ◽  
Masayuki Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document