Analysis of Power Loss by Viscous Dissipation in Hydrodynamic Thrust Bearings

2015 ◽  
Author(s):  
S. F. Rigatto ◽  
C.B. Zanelato ◽  
F.A.F. Monhol
2006 ◽  
Vol 13 (8-10) ◽  
pp. 1123-1130 ◽  
Author(s):  
Shigeka Yoshimoto ◽  
Masaaki Miyatake ◽  
Tomoatsu Iwasa ◽  
Akiyoshi Takahashi

Author(s):  
Jason Wilkes ◽  
Ryan Cater ◽  
Erik Swanson ◽  
Kevin Passmore ◽  
Jerry Brady

Abstract This paper will show the influence of ambient pressure on the thrust capacity of bump-foil and spiral-groove gas thrust bearings. The bearings were operating in nitrogen at various pressures up to 69 bar, and were tested to failure. Failure was detected at various pressures by incrementally increasing the thrust load applied to the thrust bearing until the bearing was no longer thermally stable, or until contact was observed by a temperature spike measured by thermocouples within the bearing. These tests were performed on a novel thrust bearing test rig that was developed to allow thrust testing at pressures up to 207 bar cavity pressure at 260°C while rotating at speeds up to 120,000 rpm. The test rig floats on hydrostatic air bearings to allow for the direct measurement of applied thrust load through linkages that connect the stationary thrust loader to the rotor housing. Test results on a 65 mm (2.56 in) bump-foil thrust bearing at 100 krpm show a marked increase in load capacity with gas density, which has not previously been shown experimentally. Results also show that the load capacity of a similarly sized spiral-groove thrust bearing are relatively insensitive to pressure, and supported an order-of-magnitude less load than that observed for the bump-foil thrust bearing. These results are compared with analytical predictions, which agree reasonably with the experimental results. Predicted power loss is also presented for the bump-foil bearing; however, measured power loss was substantially higher.


1983 ◽  
Vol 105 (1) ◽  
pp. 39-45 ◽  
Author(s):  
A. M. Mikula ◽  
R. S. Gregory

This paper compares three different lubricant supply methods—pressurized supply (flooded), spray feed, and leading edge distribution groove—and analyzes their influence on the performance of tilting pad, equalizing thrust bearings. The paper presents experimental data on 267 mm (10-1/2 in.) o.d. bearings, operating at shaft speeds up to 13,000 rpm with loads ranging up to 3.45 MPa (500 psi). The data presented demonstrate the effect each lubricant supply method has on bearing power loss and temperature. Conclusions are drawn, based upon the effectiveness of each design, to guide the potential user.


1981 ◽  
Vol 103 (3) ◽  
pp. 459-466
Author(s):  
D. F. Wilcock

Turbulence makes high speed conventionally designed bearings operate with higher power loss, higher temperature rise, and lower oil flow than would be predicted from conventional laminar analysis. The objective of this paper is to present a new concept for increasing the load/power efficiency of large thrust bearings by a hybrid design employing hydrostatic load support combined with hydrodynamic pads. Self-pressurization using a shaft-center feed to radial ducts in the runner provides reliability fully equal to conventional bearing-fed designs.


Author(s):  
T Cousseau ◽  
B M Graça ◽  
A V Campos ◽  
J H O Seabra
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Michal Wasilczuk ◽  
Grzegorz Rotta

Different systems of direct oil supply have been developed in order to facilitate efficient introduction of fresh lubricant to the oil gap and reduction of churning power loss in tilting pad thrust bearings. Up to now there is no documented application of the supply groove in large thrust bearings used in water power plants. The results of modeling lubricant flow in the lubricating groove of a thrust bearing pad will be presented in the paper. CFD software was used to carry out fluid film calculations. Such analysis makes it possible to modify groove geometry and other parameters and to study their influence on bearing performance. According to the results a remarkable decrease in total power loss due to avoiding churning losses can be observed in the bearing.


Mechanika ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 480-486 ◽  
Author(s):  
İsmail Şahin ◽  
Murat Dörterler ◽  
Harun Gokce

The need for precise mechanical and tribological properties of the hydrostatic bearings has made them an interesting study topic for optimisation studies. In this paper, power-loss minimization problems of hydrostatic thrust bearings were solved through Grey Wolf Optimizer (GWO). Grey Wolf Optimizer is a meta-heuristic optimization method standing out with its successful applications in engineering design problems. Power-loss minimization problem of hydrostatic thrust bearings was applied on Grey Wolf Optimizer (GWO) for the first time.  The results obtained were evaluated together with the previous studies conducted and a detailed comparison was made. The most significant innovation of the study is the innovation made in the mathematical model of the GWO.  A new model (Enhanced GWO, EGWO) that increases the variety of valid solutions is proposed. The comparisons made both with GWO and other studies in the literature show that EGWO got the known best fitness value with the highest success rate. The consistency and statistical performance of the EGWO show that this method can be used in the optimization of machine elements.


Author(s):  
Luis San Andrés ◽  
Wonbae Jung ◽  
Seong-Ki Hong

Abstract Oil-engine lubricated turbochargers (TCs) operate at high temperature and must withstand large temperature gradients that produce severe thermo-mechanical stresses in the TC mechanical components. Thus, an insight into the thermal energy flows and an effective thermal management are paramount to ensure reliable TC operation. The paper analyzes the transport of energy and heat flows in semi-floating ring bearings (SFRBs) for automotive TCs with integrated heat and fluid flow models for both (turbine and compressor sides) radial bearings and thrust bearings to produce a complete thermo-hydrodynamic analysis predictive tool. The model couples the energy transport equations and the lubrication Reynolds equations in the inner and outer films of a SFRB and the adjacent thrust films to a three-dimensional heat conduction in the floating ring and along with thermal soaking into the TC casing. Cold lubricant, supplied at a specific temperature and pressure, flows to fill the films of the radial bearings, and then the thrust bearings. The lubricated bearings, radial and axial, support shaft loads, static and dynamic, and produce drag power losses. The streams of lubricant warm up as they take away a sizable portion of the heat flow from the hot shaft plus that due to viscous shear drag. Another fraction of thermal energy flow sinks into the floating ring which presents a distinct temperature field varying along the radial, circumferential and axial directions. The computational analysis contemplates a TC operating at shaft speeds (Ω) ranging from 30 krpm to 240 krpm (4 kHz) and a SFRB supplied with engine oil at PSUP = 3.0 bar and TSUP = 120 °C. The analysis focuses on a brass-made turbine bearing as it is the one that disposes most thermal energy flow since the shaft surface is hot at Ts = 213 °C (just below the lubricant flash point temperature at 230 °C) while the casing temperature is TC = TSUP. The ring with length/diameter = 1.6 has radial bearings with four equally spaced feed holes and four axial grooves, and the ratio outer film clearance/inner film clearance equals 5.3 at room temperature. As shaft speed increases (= 100 m/s max. surface speed), the inner film temperature increases proportionally; albeit the heat flow from the shaft into the inner film decreases while the viscous drag power raises rapidly. The outer film heats to just a few degrees above TSUP since the non-spinning ring does not generate viscous shear drag. The ring heats unevenly, radially with a ∼20 °C temperature gradient from its inner to outer diameters (ID and OD), and axially with up to a ∼50 °C difference from the thrust bearing side that also produces a drag power loss. At a low shaft speed (45 krpm), heat flowing from the shaft overwhelms the drag power loss induced by shearing the inner film; whereas as shaft speed increases (240 krpm), the contribution from the drag power loss to the total energy flow disposed increases significantly, from 3% to 63%. The lubricant flows, inner plus outer, advect most of the thermal energy flow, 74% to 81%, over the range of shaft speeds, low to high. The floating ring conducts a sizeable portion of thermal energy flow, 39% to 49% of the total, though varying little with shaft speed. Similarly does the fraction of heat, 9% to 13% of the total, conducted into the TC casing. A more conductive ring material or an outer film with a longer length conduct more heat into the ring although the lubricant flows still carry most of the thermal energy flow generated by viscous drag losses and heat from the shaft. The results demonstrate the importance of designing a SFRB system with adequate clearances and proper materials to offer an adequate thermal management and avoiding too high temperatures that could varnish, even flash and burn, the engine oil. The improvements in the energy transport and heat flow modeling of a SFRB system will produce significant savings in TC performance.


1976 ◽  
Vol 98 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. W. Capitao ◽  
R. S. Gregory ◽  
R. P. Whitford

A comparison of the high-speed performance characteristics of tilting-pad, self-equalizing type thrust bearings through two independent full-scale programs is reported. This paper presents experimental data on centrally pivoted, 6-pad, 267-mm (10 1/2-in.) and 304-mm (12-in.) O.D. bearings operating at shaft speeds up to 14000 rpm and bearing loads ranging up to 2.76 MPa (400 psi). Data presented demonstrate the effects of speed and loading on bearing power loss and metal temperatures. Included is a discussion of optimum oil supply flow rate based upon considerations of bearing pad temperatures and power loss values.


Sign in / Sign up

Export Citation Format

Share Document