Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

Author(s):  
George Karavalakis ◽  
Yu Jiang ◽  
Jiacheng Yang ◽  
Maryam Hajbabaei ◽  
Kent Johnson ◽  
...  
2017 ◽  
Vol 17 (14) ◽  
pp. 8739-8755 ◽  
Author(s):  
Jenni Alanen ◽  
Pauli Simonen ◽  
Sanna Saarikoski ◽  
Hilkka Timonen ◽  
Oskari Kangasniemi ◽  
...  

Abstract. Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.


Fuel ◽  
2016 ◽  
Vol 166 ◽  
pp. 574-580 ◽  
Author(s):  
Tadveer Singh Hora ◽  
Pravesh Chandra Shukla ◽  
Avinash Kumar Agarwal

Author(s):  
Kris Quillen ◽  
Maren Bennett ◽  
John Volckens ◽  
Rudolf H. Stanglmaier

Regulatory agencies are becoming increasingly concerned with particulate emissions as the health and environmental effects are becoming better understood. While much research has been performed on diesel engines, little is known about particulate matter (PM) emissions from natural gas internal combustion engines. In this project, tests were conducted on a Waukesha VGF F18 natural gas engine running at full load. PM10 combustion emissions were collected on Teflon and quartz filters and a scanning mobility particle sizer (SMPS) was used to determine the particle size distribution. Tests were performed at 4, 5, 6, and 7% exhaust oxygen (O2) levels. Overall, it was found that a large number of small particles were emitted from this engine. The total mass based PM emissions were found to be 0.0148 gm/bkW-hr, which is slightly greater than the tier-4 nonroad diesel particulate emissions standard. Particle distributions revealed that the geometric mean diameter (GMD) of the natural gas particles was approximately 30 nm and did not change with air to fuel ratio. Particulate concentrations were found to decrease at leaner engine operating conditions. Results showed a strong correlation between the NOx and particle concentrations, while an inverse correlation between CO and particle concentrations was revealed.


2021 ◽  
Author(s):  
Prasanna Chinnathambi ◽  
Joohan Kim ◽  
Riccardo Scarcelli ◽  
Sibendu Som ◽  
Ashish Shah ◽  
...  

Abstract Lean burn natural gas engines offer low particulate emissions than diesel counterparts and provides higher efficiency when compared to stoichiometric operation. However, with the lean burn strategy, three-way catalysts (TWC) compatibility is lost due to the oxidized exhaust stream. In comparison, the exhaust gas recirculation (EGR) dilution strategy can maintain compatibility with emission after-treatment systems. The maximum tolerated EGR levels are limited by the combustion stability degradation resulting from unfavorable mixture gas composition. Prechamber spark ignition (PCSI) systems, known to increase dilution tolerance in SI engines under lean conditions, was evaluated as a means to improve EGR dilution tolerance. Scavenging of residuals within the pre-chamber is typically a concern with these systems and as such studies on these systems working with various levels of EGR ratios are rare. In this work, an unscavenged (or unfueled, or passive) PCSI system installed in a medium-duty natural gas engine is modeled using CONVERGE CFD code. Simulation results are compared against the experimental data in terms of in-cylinder pressure and heat release rates from low to high (10% to 22%) EGR levels. The prediction capability of two combustion models, a multi-zone well-stirred reactor model and a flamelet-based combustion model, i.e. G-equation, are compared and evaluated under these conditions within the RANS framework. The G-equation model predictions agreed well with experiments up to 18.8% EGR dilution level. In comparison, the MZ-WSR model predicted slow prechamber combustion at all dilution levels which influenced the main chamber combustion phasing.


Author(s):  
Kris Quillen ◽  
Maren Bennett ◽  
John Volckens ◽  
Rudolf H. Stanglmaier

Regulatory agencies are becoming increasingly concerned with particulate emissions as the health and environmental effects are becoming better understood. While much research has been performed on diesel engines, little is known about particulate matter (PM) emissions from natural gas internal combustion engines. In this project, tests were conducted on a Waukesha VGF F18 natural gas engine running at full load. PM10 combustion emissions were collected on teflon and quartz filters and a scanning mobility particle sizer was used to determine the particle size distribution. Tests were performed at 4–7% exhaust oxygen (O2) levels. Overall, it was found that a large number of small particles were emitted from this engine. The total mass based PM emissions were found to be 0.0148gm∕bkWh, which is slightly greater than the Tier-4 nonroad diesel particulate emission standard. Particle distributions revealed that the geometric mean diameter of the natural gas particles was approximately 30nm and did not change with air to fuel ratio. Particulate concentrations were found to decrease at leaner engine operating conditions. Results showed a strong correlation between the NOx and particle concentrations, while an inverse correlation between CO and particle concentrations was revealed.


2017 ◽  
Author(s):  
Robert Draper ◽  
Brendan Lenski ◽  
Franz-Joseph Foltz ◽  
Roderick Beazley ◽  
William Tenny

Sign in / Sign up

Export Citation Format

Share Document