Pressure Drop and Soot Accumulation Characteristics through Diesel Particulate Filters Considering Various Soot and Ash Distribution Types

Author(s):  
Changpu Zhao ◽  
Yayong Zhu ◽  
Sirui Huang
2020 ◽  
Vol 260 ◽  
pp. 120863 ◽  
Author(s):  
M. Pilar Orihuela ◽  
Ricardo Chacartegui ◽  
Aurora Gómez-Martín ◽  
Joaquín Ramírez-Rico ◽  
José A. Becerra Villanueva

Author(s):  
G A Stratakis ◽  
D L Psarianos ◽  
A M Stamatelos

Understanding of the mechanisms that affect flow and pressure drop in porous ceramic diesel particulate filters is important in the design optimization of this class of diesel exhaust after- treatment systems. Furthermore, determination of the parameters involved in the calculation of pressure drop as a function of collected soot mass is important for successful filter loading and regeneration modelling. This paper presents the results of an experimental analysis of pressure drop as a function of the geometric and operating parameters of cordierite and SiC diesel filters. Single- cell filters from cordierite and silicon carbide were prepared to single out any effects from the complex flow processes that take place in a full-sized filter. The product of soot layer permeability and density was experimentally determined by employing a specially designed experimental apparatus. The calculation was supported by a simple computer calculation that is also presented in this paper. The distribution of soot loading inside the channels of a full-sized filter, in various loaded and partially regenerated conditions, was assessed by connecting the apparatus to discharge through selected channels of the filter. The results are shown to improve understanding of the effects of partial regeneration and fuel additive residuals on filter back pressure and flow and soot loading distribution.


Author(s):  
Alexander Sappok ◽  
Victor W. Wong ◽  
Ryan Morrow ◽  
Ethan Zisholtz ◽  
Isaac Doustar ◽  
...  

The accumulation of lubricant-derived ash in diesel particulate filters (DPF) adversely affects engine efficiency, and is the single most important factor limiting the filter’s useful service life. The location of the ash deposits in the DPF, whether accumulated in a layer along the channel walls or packed in a pug at the end of the channels, plays a crucial role in determining the extent to which the ash impacts filter performance. This work presents results of targeted experiments designed to carefully track the evolution of the ash deposit formation and accumulation processes. Specially-formulated lubricants containing only calcium, zinc, or magnesium additives were used as chemical tracers and applied to load the same DPF in carefully designed time-sequence variations. Subsequent filter post-mortem analysis utilized scanning electron microscopy in conjunction with energy dispersive x-ray analysis to identify the chemical tracers in the ash layer and channel end-plugs. The results provide a quantitative measure of ash build-up along the channel walls, and the subsequent transport and formation of ash plugs at the end of the DPF channels. Studies with these additive tracers also showed large differences in DPF pressure drop as a function of ash chemistry. In general, calcium- and magnesium-based ash resulted in the largest increase in filter pressure drop, while ash containing primarily zinc compounds exhibited little increase in pressure drop for the same ash level in the DPF. Furthermore, despite being formulated to the same 1% total sulfated ash level, differences in ash accumulation rates between each of the lubricants provide additional insight into the magnitude of individual additives’ impact on DPF performance. Although the ash problem presents a significant challenge to lubricant and additive formulators and engine and aftertreatment system manufacturers alike, these results enhance the fundamental understanding of how ash is accumulated and distributed in the DPF. Further, the results are useful to understand the manner in which the accumulated ash affects exhaust flow restriction and filter pressure drop, as well as catalyst performance. Eventually, means of controlling both the location and packing characteristics of the ash deposits may be developed to extend DPF service life and minimize the impact of the accumulated ash on filter performance.


2001 ◽  
Author(s):  
Athanasios G. Konstandopoulos ◽  
Evangelos Skaperdas ◽  
Mansour Masoudi

2018 ◽  
Vol 22 (5) ◽  
pp. 2053-2064
Author(s):  
Maria Orihuela ◽  
Aurora Gomez-Martin ◽  
Jose Becerra-Villanueva ◽  
Javier Serrano-Reyes ◽  
Francisco Jimenez-Espadafor ◽  
...  

This paper presents the results of a preliminary experimental study to assess the performance of biomorphic silicon carbide when used for the abatement of soot particles in the exhaust of Diesel engines. Given its optimal thermal and mechanical properties, silicon carbide is one of the most popular substrates in commercial diesel particulate filters. Biomorphic silicon carbide is known for having, be-sides, a hierarchical porous microstructure and the possibility of tailoring that microstructure through the selection of a suitable wood precursor. An experimental rig was designed and built to be integrated within an engine test bench that allowed to characterizing small lab-scale biomorphic silicon carbide filter samples. A particle counter was used to measure the particles distribution before and after the samples, while a differential pressure sensor was used to measure their pressure drop during the soot loading process. The experimental campaign yielded promising results: for the flow rate conditions that the measuring devices imposed (1 litre per minute; space velocity = 42,000 L/h), the samples showed initial efficiencies above 80%, pressure drops below 20 mbar, and a low increase in the pressure drop with the soot load which allows to reach almost 100% efficiency with an increase in pressure drop lower than 15%, when the soot load is still less than 0.01 g/L. It shows the potential of this material and the interest for advancing in more complex diesel particle filter designs based on the results of this work.


Sign in / Sign up

Export Citation Format

Share Document