Rider Stature Influence to Injury Risk in Motorcycle Rear Impact to Car

Author(s):  
Wenle Lv ◽  
Ludek Hyncik ◽  
Tomasz Bonkowski
Keyword(s):  
Author(s):  
Paul S. Nolet ◽  
Larry Nordhoff ◽  
Vicki L. Kristman ◽  
Arthur C. Croft ◽  
Maurice P. Zeegers ◽  
...  

Injury claims associated with minimal damage rear impact traffic crashes are often defended using a “biomechanical approach,” in which the occupant forces of the crash are compared to the forces of activities of daily living (ADLs), resulting in the conclusion that the risk of injury from the crash is the same as for ADLs. The purpose of the present investigation is to evaluate the scientific validity of the central operating premise of the biomechanical approach to injury causation; that occupant acceleration is a scientifically valid proxy for injury risk. Data were abstracted, pooled, and compared from three categories of published literature: (1) volunteer rear impact crash testing studies, (2) ADL studies, and (3) observational studies of real-world rear impacts. We compared the occupant accelerations of minimal or no damage (i.e., 3 to 11 kph speed change or “delta V”) rear impact crash tests to the accelerations described in 6 of the most commonly reported ADLs in the reviewed studies. As a final step, the injury risk observed in real world crashes was compared to the results of the pooled crash test and ADL analyses, controlling for delta V. The results of the analyses indicated that average peak linear and angular acceleration forces observed at the head during rear impact crash tests were typically at least several times greater than average forces observed during ADLs. In contrast, the injury risk of real-world minimal damage rear impact crashes was estimated to be at least 2000 times greater than for any ADL. The results of our analysis indicate that the principle underlying the biomechanical injury causation approach, that occupant acceleration is a proxy for injury risk, is scientifically invalid. The biomechanical approach to injury causation in minimal damage crashes invariably results in the vast underestimation of the actual risk of such crashes, and should be discontinued as it is a scientifically invalid practice.


2006 ◽  
Vol 4 (5) ◽  
pp. 380-387 ◽  
Author(s):  
Yasuhiro Tominaga ◽  
Travis G. Maak ◽  
Paul C. Ivancic ◽  
Manohar M. Panjabi ◽  
Bryan W. Cunningham

Object A rotated head posture at the time of vehicular rear impact has been correlated with a higher incidence and greater severity of chronic radicular symptoms than accidents occurring with the occupant facing forward. No studies have been conducted to quantify the dynamic changes in foramen dimensions during head-turned rear-impact collisions. The objectives of this study were to quantify the changes in foraminal width, height, and area during head-turned rear-impact collisions and to determine if dynamic narrowing causes potential cervical nerve root or ganglion impingement. Methods The authors subjected a whole cervical spine model with muscle force replication and a surrogate head to simulated head-turned rear impacts of 3.5, 5, 6.5, and 8 G following a noninjurious 2-G baseline acceleration. Continuous dynamic foraminal width, height, and area narrowing were recorded, and peaks were determined during each impact; these data were then statistically compared with those obtained at baseline. The authors observed significant increases (p < 0.05) in mean peak foraminal width narrowing values greater than baseline values, of up to 1.8 mm in the left C5–6 foramen at 8 G. At the right C2–3 foramen, the mean peak dynamic foraminal height was significantly narrower than baseline when subjected to rear-impacts of 5 and 6.5 G, but no significant increases in foraminal area were observed. Analysis of the results indicated that the greatest potential for cervical ganglion compression injury existed at C5–6 and C6–7. Greater potential for ganglion compression injury existed at C3–4 and C4–5 during head-turned rear impact than during head-forward rear impact. Conclusions Extrapolation of present results indicated potential ganglion compression in patients with a non-stenotic foramen at C5–6 and C6–7; in patients with a stenotic foramen the injury risk greatly increases and spreads to include the C3–4 through C6–7 as well as C4–5 through C6–7 nerve roots.


2008 ◽  
Vol 40 (4) ◽  
pp. 1595-1603 ◽  
Author(s):  
Susan I. Fuhrman ◽  
Patricia E. Karg ◽  
Gina E. Bertocci

Author(s):  
Kenneth J. Saczalski ◽  
Mark C. Pozzi ◽  
Joseph Lawson Burton

Recent field accident statistical studies dealing with injury risk assessment of rear seated children in rear impacts indicated a doubling of AIS 2+ injuries when front seats deformed, and a 61 percent increase in fatal injury for rear-seated children, as compared to front-seated children, in rear impacts. Several interrelated factors, which influence child injury risk in rear impacts, were not evaluated in these field accident statistical studies. These factors include: rear-impact severity levels; front occupant sizes; front seat strength variations and protection levels; vehicle type; (i.e. minivan, sedan, etc.); rear child sizes; and, rear child restraint types. This current study uses an experimental “multi-variable” crash test approach, and “inferred statistical” methodology, to scientifically evaluate the several key factors that effect rear child injury risk in rear impacts. This “multi-variable” methodology was previously utilized by the authors for study of front-seated adult injury risk assessment. Various sizes of rear child surrogates (i.e. 6 month-old up to the 6 year-old Hybrid III size), located behind different sizes of front adult surrogates (i.e. small 50kg female up to larger male surrogates ballasted to 110kg) seated in different strength front seats, were dynamically tested at rear-impact severity speed change levels ranging from about 20 to 50 kph. Both sled-body-buck and full vehicle crash tests were used in this study. Front seat strength levels ranged from the weaker 3.2kN level for single recliner (SR) seats, without belts attached to the seatback, up to the stronger belt-integrated seat (BIS) levels of about 14.7kN. The study results demonstrate that, even absent rear crush intrusion, the easily deforming SR front seats pose a high risk of injury to the rear child, regardless of vehicle type, in contrast to stronger and safer BIS designs.


Author(s):  
Liming Voo ◽  
Michael Kleinberger ◽  
Andrew Merkle

Whiplash associated disorders (WAD) of the neck continue to represent a significant societal problem with associated costs estimated at over $5 billion annually. Recent dramatic increases in whiplash-related research has produced some interesting new findings related to its injury mechanism. It has been shown in human volunteer and cadaver experiments that the human head-neck structure often exhibits a transient S-shape during the initial kinematic response (Grauer et al. 1997; Luan et al. 2000; Ono et al. 1997; Yoganandan et al. 1998). Such a finding has significant impact on the injury risk assessment using the instrumented anthropomorphic test dummies in vehicular or sled testing. Unlike the recently developed dummy necks for rear impact testing, such as BioRID and TRID, the Hybrid III neck does not exhibit an S-shape curvature or the so-call “retraction” motion in rear impact testing. Numerous studies have reported that the Hybrid III neck is too stiff for low-speed rear impact testing (Svensson et al. 2000; Yoshida and Tsutsumi, 2001). Nevertheless, the Hybrid III is still being used for motor vehicle safety evaluation in rear impact as it is the only dummy neck that has been incorporated in the US Federal Motor Vehicle Safety Standards (FMVSS).


Author(s):  
Kenneth J. Saczalski ◽  
Mark C. Pozzi ◽  
Joseph Lawson Burton

This study demonstrates the use of efficient inferred statistical “factorial methods” for scientifically evaluating, with a relatively few tests, the rear-impact occupant “head and neck injury risk” performance of 2 different types of vehicle front seats, with adjustable headrests, when various size occupants are subjected to high and low impact severities. The 2 seat types studied included the stronger “belt-integrated seat” (BIS) designs, with restraints attached and having strength levels beyond 14 kN, and the more common but weaker single recliner (SR) seats, without attached restraints and having only about 3.2 kN strength. Sled-body-buck systems and full vehicle to barrier tests were run with “matched pairs” of surrogates in the 2 seat types at speed changes of 12.5 to 50 kph. Three sizes of Hybrid-III adult surrogates (i.e. 52 kg small female, 80 kg average male, and an average male surrogate ballasted to about 110 kg) were used in the evaluations. Also, some tests were run with 6 year-old Hybrid-III child surrogates located behind the front seats due to interest in potential child injury from collapsing front seats. The 2-level factorial method, combined with a biomechanical ratio comparison and a “student-t” test evaluation, were used to compare safety performance of the 2 seat designs. The resulting data analysis indicates that, in the mid to high range of rear impact severity (i.e. 20 to 50 kph), the stronger BIS seat systems tend to provide greatly improved “head-neck” protection over the weaker SR type seats for both the front seated adult occupants and rear seated children. At the low range of impact severity (i.e. 12.5 to 19 kph) there was no significant statistical difference between either seat types, except that the headrests of both could be improved.


1999 ◽  
Vol 4 (5) ◽  
pp. 4-7 ◽  
Author(s):  
Laura Welch

Abstract Functional capacity evaluations (FCEs) have become an important component of disability evaluation during the past 10 years to assess an individual's ability to perform the essential or specific functions of a job, both preplacement and during rehabilitation. Evaluating both job performance and physical ability is a complex assessment, and some practitioners are not yet certain that an FCE can achieve these goals. An FCE is useful only if it predicts job performance, and factors that should be assessed include overall performance; consistency of performance across similar areas of the FCE; consistency between observed behaviors during the FCE and limitations or abilities reported by the worker; objective changes (eg, blood pressure and pulse) that are appropriate relative to performance; external factors (illness, lack of sleep, or medication); and a coefficient of variation that can be measured and assessed. FCEs can identify specific movement patterns or weaknesses; measure improvement during rehabilitation; identify a specific limitation that is amenable to accommodation; and identify a worker who appears to be providing a submaximal effort. FCEs are less reliable at predicting injury risk; they cannot tell us much about endurance over a time period longer than the time required for the FCE; and the FCE may measure simple muscular functions when the job requires more complex ones.


Sign in / Sign up

Export Citation Format

Share Document