Numerical Simulation of In-Cylinder Particulate Matter Formation in Diesel Combustion by CFD Coupled with Chemical Kinetics Model

2019 ◽  
Author(s):  
Hiroaki Saito ◽  
Shinya Furukawa ◽  
Yoshinori Ishii ◽  
Naoki Shimazaki ◽  
Kazuhiro Ishii
Author(s):  
B. S. Soroka

The article considers the role and place of water and water vapor in combustion processes with the purpose of reduction the effluents of nitrogen oxides and carbon oxide. We have carried out the complex of theoretical and computational researches on reduction of harmful nitrogen and carbon oxides by gas fuel combustion in dependence on humidity of atmospheric air by two approaches: CFD modeling with attraction of DRM 19 chemical kinetics mechanism of combustion for 19 components along with Bowman’s mechanism used as “postprocessor” to determine the [NO] concentration; different thermodynamic models of predicting the nitrogen oxides NO formation. The numerical simulation of the transport processes for momentum, mass and heat being solved simultaneously in the united equations’ system with the chemical kinetics equations in frame of GRI methane combustion mechanism and NO formation calculated afterwards as “postprocessor” allow calculating the absolute actual [CO] and [NO] concentrations in dependence on combustion operative conditions and on design of furnace facilities. Prediction in frame of thermodynamic equilibrium state for combustion products ensures only evaluation of the relative value of [NO] concentration by wet combustion the gas with humid air regarding that in case of dry air – oxidant. We have developed the methodology and have revealed the results of numerical simulation of impact of the relative humidity of atmospheric air on harmful gases formation. Range of relative air humidity under calculations of atmospheric air under impact on [NO] and [CO] concentrations at the furnace chamber exit makes φ = 0 – 100%. The results of CFD modeling have been verified both by author’s experimental data and due comparing with the trends stated in world literature. We have carried out the complex of the experimental investigations regarding atmospheric air humidification impact on flame structure and environmental characteristics at natural gas combustion with premixed flame formation in open air. The article also proposes the methodology for evaluation of the nitrogen oxides formation in dependence on moisture content of burning mixture. The results of measurements have been used for verification the calculation data. Coincidence of relative change the NO (NOx) yield due humidification the combustion air revealed by means of CFD prediction has confirmed the qualitative and the quantitative correspondence of physical and chemical kinetics mechanisms and the CFD modeling procedures with the processes to be studied. A sharp, more than an order of reduction in NO emissions and simultaneously approximately a two-fold decrease in the CO concentration during combustion of the methane-air mixture under conditions of humidification of the combustion air to a saturation state at a temperature of 325 K.


Fuel ◽  
2006 ◽  
Vol 85 (17-18) ◽  
pp. 2593-2604 ◽  
Author(s):  
M JIA ◽  
M XIE

2005 ◽  
Vol 483 (1-2) ◽  
pp. 239-244 ◽  
Author(s):  
Ping Hsun Chen ◽  
Bing Wei Huang ◽  
Han Chang Shih

2021 ◽  
pp. 101191
Author(s):  
Sinthunon Chavanaves ◽  
Peter Fantke ◽  
Wongpun Limpaseni ◽  
Witsanu Attavanich ◽  
Sirima Panyametheekul ◽  
...  

2007 ◽  
Vol 31 (2) ◽  
pp. 1947-1954 ◽  
Author(s):  
Yun Yu ◽  
Minghou Xu ◽  
Hong Yao ◽  
Dunxi Yu ◽  
Yu Qiao ◽  
...  

Trudy NAMI ◽  
2022 ◽  
pp. 31-40
Author(s):  
A. V. Gontyurev ◽  
N. S. Zuev

Introduction (problem statement and relevance). Now it is difficult to imagine the automotive industry without constant improvement of the power plant. This is due to the constant tightening of environmental standards, so in environmental standards Euro 6 there is a limit of the countable concentration of particulate matters. To meet the Euro 6 environmental standard, vehicle manufacturers use catalytic converters, and gasoline particle filters (GPF). These methods of reducing the emissions of the exhaust gas are quite common, but they also have a limitation on the service life. The use of only catalytic converters and GPF may not be sufficient to meet the Euro 7 standards in the future. So, there is a need to reduce emissions with exhaust gases by improving the combustion process.The purpose of work is to investigate the combustion process of a turbocharged gasoline direct injection engine to reduce particulate matter by increasing the injection pressure and optimizing the injection timing. Methodology and research methods. The studies are of an experimental nature, the reliability of the data is confirmed by the use of modern measuring equipment and post processing of the measured data. Scientific novelty and results. The fuel injection parameters, which have a significant influence on the particulate matter formation and oxidation are defined.Practical significance. The recommendations to reduce particulate matter formation and to meet the requirements of the future Euro standards are given.


Sign in / Sign up

Export Citation Format

Share Document