Design and Development of an Ultrasonic Fatigue Testing System for Very High Cycle Fatigue

2020 ◽  
Author(s):  
Paul Catalin Ilie ◽  
Xavier Lesperance ◽  
Ayhan Ince
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1200
Author(s):  
Ashutosh Sharma ◽  
Min Chul Oh ◽  
Byungmin Ahn

We reviewed the research and developments in the field of fatigue failure, focusing on very-high cycle fatigue (VHCF) of metals, alloys, and steels. We also discussed ultrasonic fatigue testing, historical relevance, major testing principles, and equipment. The VHCF behavior of Al, Mg, Ni, Ti, and various types of steels were analyzed. Furthermore, we highlighted the major defects, crack initiation sites, fatigue models, and simulation studies to understand the crack development in VHCF regimes. Finally, we reviewed the details regarding various issues and challenges in the field of VHCF for engineering metals and identified future directions in this area.


2014 ◽  
Vol 891-892 ◽  
pp. 536-541 ◽  
Author(s):  
Zhi Hong Xiong ◽  
Masatoshi Futakawa ◽  
Takashi Naoe ◽  
Katsuhiro Maekawa

Very high cycle fatigue degradation of type 316L austenitic stainless steel, which is used as the structural material of neutron spallation sources under intensive neutron irradiation environment, is investigated by using an ultrasonic fatigue testing machine. The strain rate imposed on the structure of neutron spallation source is almost equivalent to that produced in the testing machine. The temperature on the surface was controlled by the air-cooling. The effect of strain rate on the fatigue strength is recognized to increase the fatigue limit.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1682
Author(s):  
Alexander Schmiedel ◽  
Christina Burkhardt ◽  
Sebastian Henkel ◽  
Anja Weidner ◽  
Horst Biermann

The fatigue lives of additively manufactured (AM) Inconel 718 (IN718) produced by selective electron beam melting and conventional wrought material as reference conditions were studied in the very high cycle fatigue regime under fully reversed loading (R = −1) at the elevated temperature of 873 K using an ultrasonic fatigue testing system. The fatigue lives of the AM material were significantly reduced compared to the wrought material, which is discussed in relation to the microstructure and a fractographical analysis. The additively manufactured material showed large columnar grains with a favoured orientation to the building direction and porosity, whereas the wrought material showed a fine-grained structure with no significant texture, but had Nb- and Ti-rich non-metallic inclusions. Crystallographic crack initiation as well as crack initiation from the surface or internal defects were observed for the AM and the wrought IN718, respectively.


2017 ◽  
Vol 742 ◽  
pp. 621-628 ◽  
Author(s):  
Dominic Weibel ◽  
Frank Balle ◽  
Daniel Backe

Structural aircraft components are often subjected to more than 108 loading cycles during their service life. Therefore the increasing use of carbon fiber reinforced polymers (CFRP) as primary lightweight structural materials leads to the demand of a precise knowledge of the fatigue behavior and the corresponding failure mechanisms in the very high cycle fatigue (VHCF) range. To realise fatigue investigations for more than 108 loading cycles in an economic reasonable time a novel ultrasonic fatigue testing facility (UTF) for cyclic three-point bending was developed and patented. To avoid critical internal heating due to viscoelastic damping and internal friction, the fatigue testing at 20 kHz is performed in resonance as well as in pulse-pause control resulting in an effective testing frequency of ~1 kHz and the capability of performing 109 loading cycles in less than twelve days. The fatigue behavior of carbon fiber twill 2/2 fabric reinforced polyphenylene sulfide (CF-PPS) and carbon fiber 4-H satin fabric reinforced epoxy resin (CF-EP) was investigated. To study the induced fatigue damage of CF-PPS and CF-EP in the VHCF regime in detail, the fatigue mechanisms and damage development were characterized by light optical and SEM investigations during interruptions of constant amplitude tests (CAT). Lifetime-oriented investigations showed a significant decrease of the bearable stress amplitudes of CF-PPS and CFEP in the range between 106 to 109 loading cycles. The ultrasonically fatigued thermoset matrix composite showed a significantly different VHCF behavior in comparison to the investigated thermoplastic matrix composite: No fiber-matrix debonding or transversal cracks were present on the specimen edges, but a sudden specimen failure along with carbon fiber breakage have been observed. The fatigue shear strength at 109 cycles for CF-PPS could be determined to τa, 13 = 4.2 MPa and to τa, 13 = 15.8 MPa for the thermoset material CF-EP.


2015 ◽  
Vol 2015 (0) ◽  
pp. _PS0010-22-_PS0010-22
Author(s):  
Reo KASAHARA ◽  
Masato NISHIKAWA ◽  
Yoshinobu SHIMAMURA ◽  
Keiichiro TOHGO ◽  
Tomoyuki FUJII

2018 ◽  
Vol 165 ◽  
pp. 20002 ◽  
Author(s):  
PENG Wen-jie ◽  
XUE Huan ◽  
GE rui ◽  
PENG zhou

When the fatigue cycle is extended from high cycle (105~107) to very high cycle (107~109), the fatigue testing results will be more sensitive to the influential factors such as specimen size, specimen surface roughness and the inclusion size. The influential factors on the very high cycle fatigue testing results are investigated in the present paper. Firstly, the design and control method for ultrasonic fatigue test were introduced for several specimen shapes. The effect of the shape, size and the surface roughness of specimen on the ultrasonic fatigue test results are investigated. Meanwhile, the effect of test frequency and the size of the inclusion on the fatigue test results are also investigated. It is concluded that: 1. the test results of specimen with different shape and size differ with each other, due to the risk volume is different. 2. There is a critical roughness for the specimen, depending on the hardness of tested metallic material. A larger roughness than the critical one will lead to a premature fracture. 3. The frequency effect is obvious for the low strength steel, however, is prone to vanish for the very high strength steel. 4. The very high cycle fatigue will be more sensitive to the inclusion size as the strength increases and the S/N curve character is strongly related to the size of the inclusion.


Machines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 25
Author(s):  
Pedro Costa ◽  
Richard Nwawe ◽  
Henrique Soares ◽  
Luís Reis ◽  
Manuel Freitas ◽  
...  

Fatigue is one of the main causes for in service failure of mechanical components and structures. With the development of new materials, such as high strength aluminium or titanium alloys with different microstructures from steels, materials no longer have a fatigue limit in the classical sense, where it was accepted that they would have ‘infinite life’ from 10 million (107) cycles. The emergence of new materials used in critical mechanical parts, including parts obtained from metal additive manufacturing (AM), the need for weight reduction and the ambition to travel greater distances in shorter periods of time, have brought many challenges to design engineers, since they demand predictability of material properties and that they are readily available. Most fatigue testing today still uses uniaxial loads. However, it is generally recognised that multiaxial stresses occur in many full-scale structures, being rare the occurrence of pure uniaxial stress states. By combining both Ultrasonic Fatigue Testing with multiaxial testing through Single-Input-Multiple-Output Modal Analysis, the high costs of both equipment and time to conduct experiments have seen a massive improvement. It is presently possible to test materials under multiaxial loading conditions and for a very high number of cycles in a fraction of the time compared to non-ultrasonic fatigue testing methods (days compared to months or years). This work presents the current status of ultrasonic fatigue testing machines working at a frequency of 20 kHz to date, with emphasis on multiaxial fatigue and very high cycle fatigue. Special attention will be put into the performance of multiaxial fatigue tests of classical cylindrical specimens under tension/torsion and flat cruciform specimens under in-plane bi-axial testing using low cost piezoelectric transducers. Together with the description of the testing machines and associated instrumentation, some experimental results of fatigue tests are presented in order to demonstrate how ultrasonic fatigue testing can be used to determine the behaviour of a steel alloy from a railway wheel at very high cycle fatigue regime when subjected to multiaxial tension/torsion loadings.


Sign in / Sign up

Export Citation Format

Share Document