Influence of Micro Geometry Modification on Gear Dynamics

2020 ◽  
Author(s):  
Carlo Rosso ◽  
Fabio Bruzzone ◽  
Tommaso Maggi ◽  
Claudio Marcellini
Keyword(s):  
1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


2018 ◽  
Vol 55 (1) ◽  
pp. 162-172 ◽  
Author(s):  
I. Tartaruga ◽  
J. E. Cooper ◽  
M. H. Lowenberg ◽  
P. Sartor ◽  
Y. Lemmens

2007 ◽  
Vol 302 (4-5) ◽  
pp. 936-950 ◽  
Author(s):  
A. Naess ◽  
F.E. Kolnes ◽  
E. Mo

2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093889
Author(s):  
Xia Hua ◽  
Zaigang Chen

The dynamics of spiral bevel gears have gained increasing importance due to concerns relating to noise and durability. This is because the mesh force acting on the gear teeth is amplified under dynamic conditions, potentially reducing the fatigue life of the gears. Furthermore, a sizable dynamic force can be transmitted to the housing, inducing structure-born gear whine. The elasticity of the bearings can influence the dynamics of spiral bevel gears. In this article, the finite element formulation of a spiral bevel geared rotor dynamic system is applied to investigate the influence of bearing elasticity on the dynamics of spiral bevel gears. The designs and configurations of rear axles are modeled and analyzed for real-world applications, to gain an enhanced practical understanding of the effect of bearing stiffness on spiral bevel gear dynamics.


2004 ◽  
Vol 126 (4) ◽  
pp. 748-752 ◽  
Author(s):  
P. Sainsot and ◽  
P. Velex ◽  
O. Duverger

The magnitude and variation of tooth pair compliance affects tooth loading and gear dynamics significantly. This paper presents an improved fillet/foundation compliance analysis based on the theory of Muskhelishvili applied to circular elastic rings. Assuming linear and constant stress variations at root circle, the above theory makes it possible to derive an analytical formula for gear body-induced tooth deflections which can be directly integrated into gear computer codes. The corresponding results are in very good agreement with those from finite element models and the formula is proved to be superior to Weber’s widely used equation, especially for large gears.


Transport ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Viktor Skrickij ◽  
Marijonas Bogdevičius

Vehicle gearbox dynamics is characterized by time varying mesh stiffness. The paper presents a survey of methods used for determining mesh stiffness and the analysis of the centre distance influence on it. The refined mathematical transmission model presenting the centre distance as a variable is presented. The centre distance error as well as backlash and bearing flexibility is defined and the influence of these factors on mesh stiffness and spur gear dynamics is investigated. The results obtained from this paper may be used in gear‐box diagnostics.


Sign in / Sign up

Export Citation Format

Share Document