VEHICLE GEARBOX DYNAMICS: CENTRE DISTANCE INFLUENCE ON MESH STIFFNESS AND SPUR GEAR DYNAMICS

Transport ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Viktor Skrickij ◽  
Marijonas Bogdevičius

Vehicle gearbox dynamics is characterized by time varying mesh stiffness. The paper presents a survey of methods used for determining mesh stiffness and the analysis of the centre distance influence on it. The refined mathematical transmission model presenting the centre distance as a variable is presented. The centre distance error as well as backlash and bearing flexibility is defined and the influence of these factors on mesh stiffness and spur gear dynamics is investigated. The results obtained from this paper may be used in gear‐box diagnostics.

2019 ◽  
Vol 97 (2) ◽  
pp. 1403-1424 ◽  
Author(s):  
Guanghui Liu ◽  
Jun Hong ◽  
Robert G. Parker

Author(s):  
Hui Ma ◽  
Jian Yang ◽  
Rongze Song ◽  
Suyan Zhang ◽  
Bangchun Wen

Considering tip relief, a finite element model of a spur gear pair in mesh is established by ANSYS software. Time-varying mesh stiffness under different amounts of tip relief is calculated based on the finite element model. Then, a finite element model of a geared rotor system is developed by MATLAB software considering the effects of time-varying mesh stiffness and constant load torque. Emphasis is given to the effects of tip relief on the lateral–torsional coupling vibration responses of the system. The results show that as the amount of tip relief increases, the saltation of time-varying mesh stiffness reduces at the position of approach action and transition mesh region from the single tooth to double tooth. A number of primary resonances and some super-harmonic of gears 1 and 2 are excited by time-varying mesh stiffness in amplitude frequency responses. As the amount of tip relief increases, some super-harmonic responses change due to the variation in the higher frequency components of time-varying mesh stiffness. After tip relief, the vibration and meshing force decrease obviously at lower mesh frequency range except at some resonance frequencies; however, tip relief is not effective in reducing the vibration at higher mesh frequency range. The amplitude fluctuation of the vibration acceleration reduces evidently after considering tip relief, which is not remarkable with the increase of meshing frequency.


2014 ◽  
Vol 592-594 ◽  
pp. 2277-2281 ◽  
Author(s):  
Rama Thirumurgan ◽  
Clement Christy C. Deepak

This work mainly aims to explore the actual load, fillet and contact stresses induced during a mesh cycle in a spur gear tooth. As the mesh stiffness differs at different contact points along the path of contact, it significantly affects the load sharing between the simultaneously meshed contact pairs hence stresses. Comparative study has been made between existing symmetric spur gear pair used in light motor vehicle gear box and asymmetric spur gear. Finite element multi pair contact model has been used to explore the load sharing behavior and related stresses in this work.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


Author(s):  
Jao-Hwa Kuang ◽  
Ah-Der Lin

Abstract A mathematical model for a spur gear pair with two-step mesh stiffness is proposed. Two constant values of mesh stiffness are used to approximate the complicated compliance alternation of contact tooth pairs between one and two during meshing. Analytical solutions of the dynamic loads are derived. The method has been employed to calculate the dynamic contact load, transmitted torque and the bearing forces. The results compared favorably with a more detailed model found in the literature.


Sign in / Sign up

Export Citation Format

Share Document