Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021 ◽  
Author(s):  
Shankar Ganesan ◽  
Rohit Chandra pauriyal ◽  
Rajesh Thiyagarajan ◽  
Parvej Alam Khan Majhar Khan

Aerodynamic drag has been experimentally estimated for scale models of a passenger car and a commercial truck in a wind tunnel. Polished surface has resulted up to 15 % reduction in drag force and add-on has resulted in 57% increase in drag force of a car model whereas 2.6 % reduction in drag force has resulted by using deflector in a commercial truck model. Anova analysis shows variation in mean of group data.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Lawrence Atepor ◽  

Chaotic Vibrations are considered for a quarter-car model excited by the road surface profile. The equation of motion is obtained in the form of a classical Duffing equation and it is modeled with deliberate introduction of parametric excitation force term to enable us manipulate the behavior of the system. The equation of motion is solved using the Method of Multiple Scales. The steady-state solutions with and without the parametric excitation force term is investigated using NDSolve MathematicaTM Code and the nonlinear dynamical system’s analysis is by a study of the Bifurcations that are observed from the analysis of the trajectories, and the calculation of the Lyapunov. In making the system more strongly nonlinear the excitation amplitude value is artificially increased to various multiples of the actual value. Results show that the system’s response can be extremely sensitive to changes in the amplitude and the that chaos is evident as the system is made more nonlinear and that with the introduction of parametric excitation force term the system’s motion becomes periodic resulting in the elimination of chaos and the reduction in amplitude of vibration.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 244
Author(s):  
Saber Karimi ◽  
Arash Zargar ◽  
Mahmoud Mani ◽  
Arman Hemmati

The feasibility of a single dielectric barrier discharge (SDBD) actuator in controlling flow over an Ahmed body, representing a simplified car model, has been numerically and experimentally investigated at Reynolds numbers of 7.68×105 and 2.25×105. The Ahmed body had slant angles of 25∘ and 35∘. The results showed that SDBD actuators could significantly enhance the aerodynamic performance of the Ahmed body. Several arrangements of the actuators on the slant surface and the rear face of the model were examined to identify the most effective arrangement for drag reduction. This arrangement resulted in an approximately 6.1% drag reduction. This improvement in aerodynamic performance is attributed to the alteration of three-dimensional wake structures due to the presence of SDBD, which coincides with surface pressure variations on the slant and rear faces of the Ahmed body.


2017 ◽  
Vol 165 ◽  
pp. 1340-1350 ◽  
Author(s):  
Dawei Wang ◽  
Pengfei Liu ◽  
Zhen Leng ◽  
Chao Leng ◽  
Guoyang Lu ◽  
...  

2008 ◽  
Vol 13 (7) ◽  
pp. 1373-1383 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec ◽  
Michael I. Friswell ◽  
Kazimierz Szabelski

Author(s):  
T. Korakianitis ◽  
M. A. Rezaienia ◽  
I. A. Hamakhan ◽  
E. Avital ◽  
J. J. R. Williams

The prescribed surface curvature distribution blade design (CIRCLE) method can be used for the design of two-dimensional (2D) and three-dimensional (3D) turbomachinery blade rows with continuous curvature and slope of curvature from leading edge (LE) stagnation point to trailing edge (TE) stagnation point and back to the LE stagnation point. This feature results in smooth surface pressure distribution airfoils with inherently good aerodynamic performance. In this paper the CIRCLE blade design method is modified for the design of 2D isolated airfoils. As an illustration of the capabilities of the method, it is applied to the redesign of two representative airfoils used in wind turbine blades: the Eppler 387 airfoil; and the NREL S814 airfoil. Computational fluid dynamic analysis is used to investigate the design point and off-design performance of the original and modified airfoils, and compare with experiments on the original ones. The computed aerodynamic advantages of the modified airfoils are discussed. The surface pressure distributions, drag coefficients, and lift-to-drag coefficients of the original and redesigned airfoils are examined. It is concluded that the method can be used for the design of wind turbine blade geometries of superior aerodynamic performance.


Author(s):  
T. Korakianitis ◽  
M. A. Rezaienia ◽  
I. A. Hamakhan ◽  
E. J. Avital ◽  
J. J. R. Williams

The prescribed surface curvature distribution blade design (CIRCLE) method can be used for the design of two-dimensional (2D) and three-dimensional (3D) turbomachinery blade rows with continuous curvature and slope of curvature from leading edge (LE) stagnation point to trailing edge (TE) stagnation point and back to the LE stagnation point. This feature results in smooth surface pressure distribution airfoils with inherently good aerodynamic performance. In this paper the CIRCLE blade design method is modified for the design of 2D isolated airfoils. As an illustration of the capabilities of the method, it is applied to the redesign of two representative airfoils used in wind turbine blades: the Eppler 387 airfoil and the NREL S814 airfoil. Computational fluid dynamic analysis is used to investigate the design point and off-design performance of the original and modified airfoils, and compare with experiments on the original ones. The computed aerodynamic advantages of the modified airfoils are discussed. The surface pressure distributions, drag coefficients, and lift-to-drag coefficients of the original and redesigned airfoils are examined. It is concluded that the method can be used for the design of wind turbine blade geometries of superior aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document