scholarly journals Aerodynamic Performance of Road Vehicles

Aerodynamic drag has been experimentally estimated for scale models of a passenger car and a commercial truck in a wind tunnel. Polished surface has resulted up to 15 % reduction in drag force and add-on has resulted in 57% increase in drag force of a car model whereas 2.6 % reduction in drag force has resulted by using deflector in a commercial truck model. Anova analysis shows variation in mean of group data.

1973 ◽  
Vol 187 (1) ◽  
pp. 333-347
Author(s):  
G. W. Carr

The principal factors determining the aerodynamic lift of cars are identified from the results of an extensive series of wind-tunnel tests involving simple models of bluff and streamlined form and a variable-geometry saloon-car model. The influence is examined of basic parameters such as camber, incidence, thickness, ground clearance, and underbody roughness. An indication is also given of the extent to which the lift is modified by the squaring of individual edges, particularly the horizontal leading and trailing edges; and the effectiveness of devices fitted under the nose of a car to reduce lift is discussed.


Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Ahsan Mian

Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.


Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Abstract As indicated by previous studies, many attributes of tires have been shown to have an impact on tire aerodynamic drag. However, the way these attributes affect tire aerodynamics has not been systematically investigated to date. It is not clear which tire attributes have the most significant impact on aerodynamic drag. Therefore, a sensitivity study of the effects of tire attributes on tire aerodynamic performance is proposed in this study. This sensitivity study improves the understanding of flow structures and mechanisms around tires. First, a baseline CFD model of a tire is created and validated by experimental data. In the computational model, the tire is positioned in a wind tunnel to match the experimental testing configuration. A hybrid boundary condition method is used to simulate a rotating tire. Based on the validated baseline model, various tire attributes are considered and compared in the study proposed. The tire attributes considered include tire width, tire side wall profile, lateral grooves, and open rim design. There are five cases in total for the sensitivity study. Then the effects of these attributes on the tire aerodynamic drag are calculated and compared. The most influencing feature is then identified. The results show that a smoothed side wall profile with smaller radius can improve the aerodynamic performance of an isolated tire. On the other hand, the influence of lateral grooves on tire aerodynamic performance is limited. The force integrated from all lateral groove surfaces only account to less than 2% of the total tire drag force. Additionally, an idealized open rim design changes the flow structure significantly, which leads to the increase of aerodynamic drag. The force integrated on the rim surface account for up to 20% of the overall tire drag force.


Author(s):  
Tian Li ◽  
Ming Li ◽  
Zheng Wang ◽  
Jiye Zhang

In wind tunnel experiments, the inter-car gaps are designed in such a way as to separate the force measurements for each car and prevent the interference between cars during tests. Moreover, the inter-car gap has a significant effect on the aerodynamic drag of a train. In order to guide the design of the inter-car gaps between cars in wind tunnel experiments, the impact of the inter-car gap length on the aerodynamic characteristics of a 1/8th scale high-speed train is investigated using computational fluid dynamics. The shear stress transport k-ω model is used to simulate the flow around a high-speed train. The aerodynamic characteristics of the train with 10 different inter-car gap lengths are numerically simulated and compared. The 10 different inter-car gap lengths are 5, 8, 10, 15, 20, 30, 40, 50, 60, and 80 mm. Results indicate that the aerodynamic drag coefficients obtained using computational fluid dynamics fit the experimental data well. Rapid pressure variations appear in the upper and lower parts of the inter-car gaps. With the increase of the inter-car gap length, the drag force coefficient of the head car gradually increases. The total drag force coefficients of the trains with the inter-car gap length less than 10 mm are practically equal to those of the trains without inter-car gaps. Therefore, it can be concluded from the present study that 10 mm is recommended as the inter-car gap length for the 1/8th scale high-speed train models in wind tunnel experiments.


2020 ◽  
Vol 26 (4) ◽  
pp. 47-63
Author(s):  
Zahraa Mahdi Saleh ◽  
Anmar Hamid Ali ◽  
Mustafa Sabeeh Abood

An experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on the baseline car for different Reynolds numbers was (0.381) and the drag force was reduced by adding a spoiler and a slice diffuser to (4.45%, 1.5%) respectively, whereas the amount of drag reduction was (5.46%) when all drag reduction modifications were added together on the base car. No effect was noticed as vortex generators when added separately. The deviation in the drag coefficient from the real car testing was about (6.2%) and shows a very good agreements between the real car test and that of the wind tunnel test.


1973 ◽  
Vol 187 (1) ◽  
pp. 333-347 ◽  
Author(s):  
G. W. Carr

The principal factors determining the aerodynamic lift of cars are identified from the results of an extensive series of wind-tunnel tests involving simple models of bluff and streamlined form and a variable-geometry saloon-car model. The influence is examined of basic parameters such as camber, incidence, thickness, ground clearance, and underbody roughness. An indication is also given of the extent to which the lift is modified by the squaring of individual edges, particularly the horizontal leading and trailing edges; and the effectiveness of devices fitted under the nose of a car to reduce lift is discussed.


2012 ◽  
Vol 28 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Vincent Chabroux ◽  
Caroline Barelle ◽  
Daniel Favier

The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist’s upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.


Sign in / Sign up

Export Citation Format

Share Document