An LN2 Fuel Tank Inerting System for Commercial Transports

1974 ◽  
Author(s):  
Kenneth R. Bragg
Keyword(s):  
2021 ◽  
Vol 34 (3) ◽  
pp. 82-93
Author(s):  
Xiaotian PENG ◽  
Shiyu FENG ◽  
Chaoyue LI ◽  
Chen CHEN ◽  
Weihua LIU

2014 ◽  
Vol 1061-1062 ◽  
pp. 1140-1143
Author(s):  
Dong Jie Liu

The numerical study of the influence of the ambient pressure of the fuel tank on the inerting effect of an aircraft fuel tank inerting system was carried out. The mathematical model of ullage equilibrium oxygen concentration has been established using the differential time calculation method based on the mass conservation and ideal gas state equations. The variations of ullage oxygen concentration and dissolved oxygen concentration in the fuel with time under different working conditions have been obtained. The results have shown that the as the ambient pressure of the fuel tank became lower, the speed of the decreasing of oxygen concentration of the fuel tank ullge and the dissolved oxygen concentration of the fuel was slower.


Author(s):  
Chaoyue Li ◽  
Shiyu Feng ◽  
Chen Chen ◽  
Xiaotian Peng ◽  
Weihua Liu

The onboard inert gas generation system with turbocharger (OBIGGSTC) was proposed for better inerting performance of an aircraft fuel tank. The operating principle and method of the system were introduced, and the mathematical model of the major component was deduced. Then, the characteristic of the system was simulated based on the software AMESim. Compared with the traditional onboard inert gas generation system (OBIGGS), the proposed system has the potential advantages of reducing the weight and volume of the air separation system by decreasing the number of hollow fiber membrane modules (HFMMs) from a maximum number of eight to one at 0.3 MPa of the bleed air from the engine. When both inerting systems have a single HFMM configuration, the OBIGGSTC can substantially reduce the inerting time by 66.6% compared with the OBIGGS at 0.3 MPa of the bleed air. Due to the turbine applied, the mass flow rate of the bleed air of the inerting system with turbine is greater than the traditional system. The compensatory loss of the proposed system is less than the OBIGGS by a maximum of 57.39% when the bleed air pressure varies from 0.3 to 0.8 MPa with a range in flight time from 4 h to 10 h. By analyzing the two inerting system, the OBIGGSTC has better performance than the OBIGGS.


Author(s):  
Fei Wu ◽  
Guiping Lin ◽  
Yu Zeng ◽  
Rui Pan ◽  
Haoyang Sun

2015 ◽  
Vol 28 (2) ◽  
pp. 394-402 ◽  
Author(s):  
Yan Cai ◽  
Xueqin Bu ◽  
Guiping Lin ◽  
Bing Sun ◽  
Yu Zeng ◽  
...  

1999 ◽  
Author(s):  
G. Kinnes ◽  
P. Jensen ◽  
K. Mead ◽  
D. Watkins ◽  
L. Smith ◽  
...  

Author(s):  
Liudas Mažeika ◽  
Rymantas Kažys ◽  
Renaldas Raišutis ◽  
Andriejus Demčenko ◽  
Reimondas Sliteris

2020 ◽  
Vol 15 ◽  
Author(s):  
Jin Li ◽  
Xingsheng Jiang ◽  
Jingye Li ◽  
Yadong Zhao ◽  
Xuexing Li

Background: In the whole design process of modular fuel tank, there are some unreasonable phenomena. As a result, there are some defects in the design of modular fuel tank, and the function does not meet the requirements in advance. This paper studies this problem. Objective: Through on-the-spot investigation of the factory, a mechanical design process model is designed. The model can provide reference for product design participants on product design time and design quality, and can effectively solve the problem of low product design quality caused by unreasonable product design time arrangement. Methods: After sorting out the data from the factory investigation, computer software is used to program, simulate the information input of mechanical design process, and the final reference value is got. Results: This mechanical design process model is used to guide the design and production of a new project, nearly 3 months ahead of the original project completion time. Conclusion: This mechanical design process model can effectively guide the product design process, which is of great significance to the whole mechanical design field.


Sign in / Sign up

Export Citation Format

Share Document