cryogenic fluids
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Zijia Zhao ◽  
Peter Moore ◽  
Casey Owen ◽  
Mischael Anilus ◽  
Steve Chau ◽  
...  

Author(s):  
Kaifen Yan ◽  
Nanxi Li ◽  
Yinong Wu ◽  
Rongjian Xie

Abstract The cryogenic fluids' flow performance and condensation characteristics with different heating powers in cryogenic loop heat pipes (CLHPs) have not been studied due to the difficulty of measurement at low temperature. In this study, a test system was designed and fabricated to characterize the condensation flow patterns of a propylene CLHP and its heat transfer performance with different heating powers. The results show that the two-phase region length and flow pattern in the condenser were closely related to the operation mode of the CLHP. The vapor front in the condenser oscillated at the condenser inlet at a low heating power, which resulted in an unstable operation of the CLHP. Moreover, by comparing the condensation heat transfer coefficient (HTC) with the condensation correlations, the Cavallini correlation is recommended for the design of CLHP condenser.


2021 ◽  
Vol 9 (1) ◽  
pp. 115-120
Author(s):  
Kevin Supak ◽  
Steve Green ◽  
Amy McCleney

Abstract Improvement of cryogenic fluid storage and transfer technology for in-space propulsion and storage systems is required for long-term space missions. Screened channel liquid acquisition devices (LADs) have long been used with storable propellants to deliver vapor-free liquid during engine restart and liquid transfer processes. The use of LADs with cryogenic fluids is problematic due to low temperatures associated with cryogenic fluids. External heat leaks will cause vapor bubbles to form within the LADs that are difficult to remove in the existing designs. A tapered LAD channel has been proposed to reliably remove vapor bubbles within the device without costly thrusting maneuvers or active separation systems. A model has been developed to predict bubble movement within tapered LAD channels, and subsequent ground testing was completed with a simulant fluid to provide model validation data. Suborbital microgravity testing of tapered LAD technology was recently completed with two different simulant fluids and demonstrated that the concept can passively expel vapor bubbles within the channel. Two additional suborbital flights have been funded to further develop this technology by investigating the performance of larger scale versions of the design.


2020 ◽  
Vol 6 (2) ◽  
pp. 12-19
Author(s):  
Yuri I. Kondrashov ◽  
Elena N. Ermilova ◽  
Anna N. Vidyaskina

For units providing flow control for cryogenic fluids and operating under conditions of a significant change in the temperature range from positive to cryogenic and in a two-phase state of the working fluid, the problem of sealing the closure members of the units (valve pairs) becomes urgent.Joint sealing is ensured by creating contact pressure in the joint through deforming the roughness peaks obtained by surface treatment of the valve pair.The mechanical properties of the materials of the contacting valve pairs change significantly under the influence of cryogenic temperatures. First of all, the plastic properties are reduced, therefore, the creation of increased contact pressure is required.The article presents a methodology for evaluation of changes in the microgeometry of contacting surfaces depending on the specific contact pressure. It also allows one to evaluate the conductivity of microgaps in the viscous and molecular regimes of fluid flow through contacting surfaces.


Author(s):  
Y. Belkassmi ◽  
L. Elmaimouni ◽  
A. Rafiki ◽  
K. Gueraoui ◽  
N. Hassanain

The purpose of this paper is to investigate mass and heat transfer in the process of film condensation of vapor-air mixture for non-cryogenic fluids flow in a small vertical tube. A two-phase mathematical model is developed to model the mixture and liquid film. The governing equations for mixture and liquid-film have been resolved using a numerical method. Furthermore, this phenomenon analyzed is linked to a steady-state. Therefore, the development of numerical codes allows us to investigate the effect of implicated parameters on this phenomenon. Ethanol and methanol as non-cryogenic typical working fluids are realized for a good understanding of the heat and mass transfer mechanism during condensation. In this way, several effects of influencing parameters were examined. The predicted results showed a good agreement with experimental data.


2020 ◽  
Vol 34 (17) ◽  
pp. 2050184 ◽  
Author(s):  
Suguo Shi ◽  
Guoyu Wang

Thermal effects dramatically impact on the cavitation dynamics of cryogenic fluids. Thus, to study the thermal effect factors influencing cryogenic cavitation, numerical simulations were conducted considering an axisymmetric ogive and a 2D quarter caliber hydrofoil in liquid nitrogen and hydrogen, respectively. The modified Merkle cavitation model and filter-based turbulence model were applied to account for the thermodynamic properties of the fluid. The energy equation was modified considering the cavitation phase change effects. Compared to the experimental data, the numerical method satisfactorily predicts the cryogenic cavitation flows. Based on the numerical results, the thermal effect characteristics in the cavitation flow of cryogenic fluids were investigated. The thermal effects in cryogenic cavitation is obvious when vapor content in constant location is considerably low, where the cavity becomes more porous and the interface becomes less distinct. The factors influencing the thermal effects in cavitation such as the temperature, fluid type and velocity were analyzed. Findings showed that thermal effects of cavitation were prominent around the critical temperature of cryogenic liquids. Compared to the thermal effects in liquid nitrogen, those in liquid hydrogen were more distinct because of the changes in the density ratio, vapor pressure and other fluid properties. When the flow velocity is higher, the thermal effects of cavitation are suppressed as the pressure depression caused by evaporation is much smaller than the dynamic pressure.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3038 ◽  
Author(s):  
Jaya Madana Gopal ◽  
Giovanni Tretola ◽  
Robert Morgan ◽  
Guillaume de Sercey ◽  
Andrew Atkins ◽  
...  

In this paper we provide insight into the thermophysical properties and the dynamics of cryogenic jets. The motivation of the work is to optimise the use of cryogenic fluids in novel ultra low emission engines. For demonstration, we use conditions relevant to an internal combustion engine currently being developed by Dolphin N2 and the University of Brighton, the CryoPower recuperated split cycle engine (RSCE). The principle of this engine is a split-cycle combustion concept which can use cryogenic injection in the compression cylinder to achieve isothermal compression and thus help maximise the efficiency of the engine. Combined experimental and numerical findings are presented and the effects of atomisation dynamics of the LN 2 are explored at both sub- and supercritical conditions in order to cover different pressure and temperature conditions representative of the engine compression cycle. For subcritical regimes, we observe that the appearance of the jet coincides with the predicted atomisation regimes based on the Weber, Ohnesorge and Reynolds numbers for other common fluids. For the modelling of supercritical jets, a new methodology within OpenFoam which accounts for Real Fluid Thermodynamics has been developed and the jet behaviour under various pressure and temperature conditions has been investigated. To our knowledge this is the first study where a cryogenic spray process evolution is examined for conditions relevant to the ones prevailing in a compression chamber accounting for both sub and supercritical conditions.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 19 ◽  
Author(s):  
Harith Jayakody ◽  
Raya Al-Dadah ◽  
Saad Mahmoud

Renewed interest in freeze desalination has emerged due to its advantages over other desalination technologies. A major advantage of the freeze desalination process over evaporative methods is its lower energy consumption (latent heat of freezing is 333.5 kJ/kg and latent heat of evaporation is 2256.7 kJ/kg). Cryogenic fluids like LN2/LAir are emerging as an effective energy storage medium to maximise utilisation of intermittent renewable energy sources. The recovery of this stored cold energy has the potential to be used for freeze desalination. Computational Fluid Dynamics (CFD) modelling was developed to simulate the evaporation of liquid nitrogen to simultaneously conduct freeze desalination to investigate the feasibility of using cryogenic energy for freeze desalination. This integrated CFD model was validated using experimental heat exchanger test facility constructed, to evaporate liquid nitrogen to supply the cooling required for freezing. Parametric study on the LN2 flow rate to observe the volume of ice obtained was also examined using CFD, where increasing the velocity of LN2 by 6 times, increased the volume of ice obtained by 4.3 times. A number of freezing stages were required in order to reduce the ice salinity from 1.5% down to 0.1% as regarded by the World Health Organisation (WHO) as safe to drink. In the cryogenic desalination test rig, approximately 1.35 L of liquid nitrogen was required to reduce the ice salinity from 1.5% to less than 0.1%. Furthermore, the above results illustrate the potential of using the cold energy of cryogenic fluids such as Liquified Natural Gas (LNG) and LN2/LAir for freeze desalination applications as most cold energy during LNG regasification has been unexploited today.


Sign in / Sign up

Export Citation Format

Share Document