Microgravity Two-Phase Flow Experiment and Test Results

1991 ◽  
Author(s):  
Wayne S. Hill ◽  
Frederick R. Best
2015 ◽  
Vol 53 (4) ◽  
pp. 537-545 ◽  
Author(s):  
Goro Aoyama ◽  
Kiyoshi Fujimoto ◽  
Kenichi Katono ◽  
Takuji Nagayoshi ◽  
Atsushi Baba ◽  
...  

Author(s):  
H. Zimmermann ◽  
A. Kammerer ◽  
R. Fischer ◽  
D. Rebhan

A strategy is outlined on how to introduce two-phase flow correlations into air/oil system calculations for aero engines. The importance of two-phase flow effects is highlighted by demonstrating their particular significance for the high altitude performance of a vent system. For air/oil mixtures very little can be obtained from the literature and correlations derived from air/water test results have to be corrected. For critical flow conditions in restrictors an improved method is developed. Some test data obtained for air/oil mixtures show, that the proposed correlations agree fairly well. Furthermore, it is shown how numerical methods for this complex field of fluid dynamics can be used in the future by the example of phase demixing by centrifugal forces.


2014 ◽  
Vol 35 (2) ◽  
pp. 93-101
Author(s):  
Monika Wengel ◽  
Barbara Miłaszewicz ◽  
Roman Ulbrich

Abstract Gas-liquid two-phase flow in minichannels has been the subject of increased research interest in the past few years. Evaluation, however, of today’s state of the art regarding hydrodynamics of flow in minichannels shows significant differences between existing test results. In the literature there is no clear information regarding: defining the boundary between minichannels and conventional channels, labelling of flow patterns. The review of literature on the hydrodynamics of gas-liquid flow in minichannels shows that, despite the fact that many research works have been published, the problem of determining the effect of diameter of the minichannel on the hydrodynamics of the flow is still at an early stage. Therefore, the paperpresents the results of research concerning determination of flow regime map for the vertical upward flow in minichannels. The research is based on a comprehensive analysis of the literature data and on the research that has been carried out. Such approach to the mentioned above problems concerning key issues of the two-phase flow in minichannels allowed to determine ranges of occurrence of flow structures with a relatively high accuracy.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


2013 ◽  
Vol 37 ◽  
pp. 5580-5587 ◽  
Author(s):  
Cheng-Hsien Tsai ◽  
Chih-Hao Yang ◽  
Chi-Wen Yu ◽  
Yuh-Ruey Wang ◽  
Chung-Hui Chiao ◽  
...  

Author(s):  
Michael Flouros ◽  
Andreas Kanarachos ◽  
Kyros Yakinthos ◽  
Christina Salpingidou ◽  
Francois Cottier

In modern aero-engines, the lubrication system holds a key role due to the demand for high reliability standards. An aero-engine bearing chamber contains components like bearings and gears. Oil is used for lubrication and for heat removal. In order to retain the oil in a bearing chamber, pressurized seals are used. These are pressurized using air from the compressor. In order to avoid overpressurization of the bearing chamber, air/oil passages are provided in the bearing chamber. At the top, a vent pipe discharges most of the sealing air and at the bottom, a scavenge pipe is used for discharging the oil by means of a pump (scavenge pump). The scavenge pipe is setup in most cases by tubes of circular or noncircular cross sections. When the scavenge pipe has to be routed in a way that sharp bends or elbows are unavoidable, flexible (corrugated) pipes can be used. Because of the corrugation, considerable flow resistance with high-pressure drop can result. This may cause overpressurization of the bearing compartment with oil loss into the turbomachinery with possibility of ignition, coking (carbon formation), or contamination of the aircraft’s air conditioning system. It is therefore important for the designer to be capable to predict the system’s pressure balance behavior. A real engine bearing chamber sealed by brush seals was used for generating different air/oil mixtures thus corresponding to different engine operating conditions. The mixtures were discharged through a scavenge pipe which was partly setup by corrugated tubes. Instead of a mechanical pump, an ejector was used for evacuating the bearing chamber. An extensive survey covering the existing technical literature on corrugated tube pressure drop was performed and is presented in this paper. The survey has covered both single-phase and multiphase flows. Existing methods were checked against the test results. The method which was most accurately predicting lean air test results from the rig was benchmarked and was used as the basis for extending into a two-phase flow pressure drop correlation by applying two-phase flow multiplier techniques similar to Lockhart and Martinelli. Comparisons of the new two-phase flow pressure drop correlation with an existing correlation by Shannak are presented for mixtures like air/oil, air/water, air/diesel, and air/kerosene. Finally, numerical analysis results using ansys cfx version 15 are presented.


2017 ◽  
Vol 54 ◽  
pp. 109-123 ◽  
Author(s):  
Yahaya D. Baba ◽  
Archibong E. Archibong ◽  
Aliyu M. Aliyu ◽  
Abdulhaqq I. Ameen

Sign in / Sign up

Export Citation Format

Share Document