Local Heat Transfer on a Combustion Chamber Wall of a Spark-Ignition Engine

1993 ◽  
Author(s):  
Yasuo Harigaya ◽  
Fujio Toda ◽  
Michiyoshi Suzuki
Author(s):  
I C Finlay ◽  
D Harris ◽  
D J Boam ◽  
B I Parks

The influence on cylinder head temperatures of parameters such as cylinder head material, coolant composition, pressure, temperature and velocity was investigated. Each of these parameters was systematically varied and its influence on combustion chamber wall temperature measured. Good agreement is shown between the measured values and corresponding predictions from a heat transfer model incorporating forced-convective, sub-cooled, nucleate boiling. The results suggest that nucleate boiling can play an important role in the transfer of heat from cylinder head to coolant.


2019 ◽  
Vol 39 (10) ◽  
pp. 831-836
Author(s):  
R. Z. Kavtaradze ◽  
T. M. Natriashvili ◽  
M. G. Glonti ◽  
Yichun Wang ◽  
G. Zh. Sakhvadze

Author(s):  
T. Shudo ◽  
H. Oka

Hydrogen is a clean alternative to fossil fuels for internal combustion engines and can be easily used in spark-ignition engines. However, the characteristics of the engines fueled with hydrogen are largely different from those with conventional hydrocarbon fuels. A higher burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a higher degree of constant volume and a larger heat transfer from the burning gas to the combustion chamber wall of the engines. Because of the large heat loss, the thermal efficiency of an engine fueled with hydrogen is sometimes lower than that with hydrocarbons. Therefore, the analysis and the reduction of the heat loss are crucial for the efficient utilization of hydrogen in internal combustion engines. The empirical correlations to describe the total heat transferred from the burning gas to the combustion chamber walls are often used to calculate the heat loss in internal combustion engines. However, the previous research by one of the authors has shown that the widely used heat transfer correlations cannot be properly applied to the hydrogen combustion even with adjusting the constants in them. For this background, this research analyzes the relationship between characteristics of thermophysical properties of working substance and heat transfer to the wall in a spark-ignition engine fueled with hydrogen.


Author(s):  
V.B. Sapozhnikov ◽  
V.Yu. Mityakov ◽  
A.V. Mityakov ◽  
A.V. Vintsarevich ◽  
D.V. Gerasimov

We used gradient thermometry to determine local heat transfer coefficients on the fire deck surface. We studied two modes of engine operation, that is, motored and fired. We show that the heat transfer coefficient distribution over the fire deck surface is inhomogeneous. Our investigation results may be used to validate existing models of heat transfer in a combustion chamber.


Author(s):  
M. R. Modarres Razavi ◽  
A. Hosseini ◽  
M. Dehnavi

The way in which position of spark plug affects combustion in a spark ignition engine can be analyzed by using two-zone burning model. The purpose of this paper is to extract correlations to simulate the geometric interaction between the propagating flame and the general cylindrical combustion chamber. Eight different cases were recognized. Appropriate equations to calculate the flame area (Af), the burned and the unburned volume (Vb & Vu) and the heat transfer areas related to the burned and unburned regions were derived and presented for each case using Taylor expansion in order to replace numerical solution with trigonometric algebraic functions.


Sign in / Sign up

Export Citation Format

Share Document