scholarly journals Enumeration of Epicyclic-Type Automatic Transmission Gear Trains

1994 ◽  
Author(s):  
Goutam Chatterjee ◽  
Lung-Wen Tsai
Author(s):  
Essam L. Esmail

A new methodology for the enumeration of feasible clutching sequences for a given epicyclic gear mechanism (EGM) is presented using the kinematic nomographs of epicyclic-type transmission mechanisms. From such nomographs, the kinematic characteristics of an epicyclic gear mechanism can be expressed in terms of the gear ratios of its gear pairs. From a single nomograph, the angular velocities for all of the coaxial links can be estimated and compared directly without specifying the exact size of each gear. In addition, the angular velocities can be arranged in a descending sequence without using complicated artificial intelligence or algorithmic techniques. Then, a procedure for the enumeration of feasible clutching sequences associated with a transmission mechanism composed of two or more fundamental gear entities (FGEs) is developed. The reliability of the methodology is established by applying it to two transmission gear trains for which solutions are either fully or partially available in the literature. In the process, an incomplete in the results reported in previous literature is brought to light. And the root cause of this incompleteness is explored. The present methodology is judged to be more efficient for enumeration of all feasible clutching sequences of an EGM.


Author(s):  
Goutam Chatterjee ◽  
Lung-Wen Tsai

Abstract The enumeration of epicyclic gear mechanisms in the form of graphs gives rise to the need of a methodology for reverse transformation, that is, for constructing the mechanisms from graphs. This paper addresses the issue by discretizing an epicyclic gear mechanism into Fundamental Geared Entities. Further, these geared entities are shown to be a conglomeration of four primitives; namely, the carrier, sun, ring, and the planet gear. An algorithm is formulated to create the entities from a graph by using these primitives. The entities are then connected together to form a mechanism.


1996 ◽  
Vol 118 (3) ◽  
pp. 405-411 ◽  
Author(s):  
G. Chatterjee ◽  
Lung-Wen Tsai

The enumeration of epicyclic gear mechanisms in the form of graphs gives rise to the need of a methodology for reverse transformation, that is, for constructing the mechanisms from graphs. This paper addresses the issue by discretizing an epicyclic gear mechanism into Fundamental Geared Entities. Further, these geared entities are shown to be a conglomeration of four primitives; namely, the carrier, sun, ring, and the planet gear. An algorithm is formulated to create the entities from a graph by using these primitives. The entities are then connected together to form a mechanism.


2016 ◽  
Vol 49 (3) ◽  
pp. 123-128 ◽  
Author(s):  
Adama Fofana ◽  
Olivier Haas ◽  
Vince Ersanilli ◽  
Keith Burnham ◽  
Joe Mahtani ◽  
...  

Author(s):  
Essam L. Esmail ◽  
Hamed A. Hussen

A new methodology for constructing multi-axes nomographs is developed. Using this methodology, a unified general formulation for computing velocities and torques of any epicyclic-type transmission train is presented. To demonstrate and apply the new technique, Ravigneaux automatic transmission is used to show how the velocities, the torques and the power flow through the train can be simultaneously visualized on a single nomograph. The present methodology is judged to be more efficient than other methods and than the three-ax nomograph methodology. Using this methodology an innovative design of two-input transmission with only one electric motor/generator (MG) and without any rotating clutches is presented. The proposed design provides some of the benefits and flexibility of a power-split design by using the conventionally available Ravigneaux gear train in a simpler mechanical layout which makes the design compact, mechanically simple, and operationally flexible.


1999 ◽  
Vol 122 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Mikael Holgerson

Automatic transmission gear shifts are handled by wet clutches, which determine the smoothness. The clutch face temperatures during the engagements are often an important parameter for the total clutch life. A wet clutch test rig has been used to evaluate how a wet clutch engagement can be improved in terms of smoothness and temperature. This was performed with control based upon knowledge about friction characteristics and dynamic performance. The parameters used for control were the drive torque and the normal force on the clutch. By drive torque shut-off and reduced normal force the torque variations were greatly reduced and the temperature rise was decreased by 37%. [S0742-4787(00)01601-5]


Sign in / Sign up

Export Citation Format

Share Document