Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994 ◽  
Author(s):  
Yoshihisa Yamaki ◽  
Kazutoshi Mori ◽  
Hiroshi Kamikubo ◽  
Susumu Kohketsu ◽  
Kohji Mori ◽  
...  
2017 ◽  
Vol 10 (3) ◽  
pp. 1119-1127 ◽  
Author(s):  
Jost Weber ◽  
Olaf Herrmann ◽  
Ron Puts ◽  
Jyun Kawamura ◽  
Yasufumi Tomida ◽  
...  

Author(s):  
Cosmin E. Dumitrescu ◽  
W. Stuart Neill ◽  
Hongsheng Guo ◽  
Vahid Hosseini ◽  
Wallace L. Chippior

An experimental study was performed to investigate fuel property effects on premixed charge compression ignition (PCCI) combustion in a heavy-duty diesel engine. A matrix of research diesel fuels designed by the Coordinating Research Council, referred to as the Fuels for Advanced Combustion Engines (FACE), was used. The fuel matrix design covers a wide range of cetane numbers (30 to 55), 90% distillation temperatures (270 to 340 °C) and aromatics content (20 to 45%). The fuels were tested in a single-cylinder Caterpillar diesel engine equipped with a common-rail fuel injection system. The engine was operated at 900 rpm, a relative air/fuel ratio of 1.2 and 60% exhaust gas recirculation (EGR) for all fuels. The study was limited to a single fuel injection event starting between −30° and 0 °CA after top dead center (aTDC) with a rail pressure of 150 MPa. The brake mean effective pressure (BMEP) ranged from 2.6 to 3.1 bar depending on the fuel and its injection timing. The experimental results show that cetane number was the most important fuel property affecting PCCI combustion behavior. The low cetane number fuels had better brake specific fuel consumption (BSFC) due to more optimized combustion phasing and shorter combustion duration. They also had a longer ignition delay period available for premixing, which led to near-zero soot emissions. The two fuels with high cetane number and high 90% distillation temperature produced significant soot emissions. The two fuels with high cetane number and high aromatics produced the highest brake specific NOx emissions, although the absolute values were below 0.1 g/kW-h. Brake specific HC and CO emissions were primarily a function of the combustion phasing, but the low cetane number fuels had slightly higher HC and lower CO emissions than the high cetane number fuels.


Author(s):  
Cosmin E. Dumitrescu ◽  
W. Stuart Neill ◽  
Hongsheng Guo ◽  
Vahid Hosseini ◽  
Wallace L. Chippior

An experimental study was performed to investigate fuel property effects on Premixed-Charge Compression Ignition (PCCI) combustion in a heavy-duty diesel engine. A matrix of research diesel fuels designed by the Coordinating Research Council, referred to as the Fuels for Advanced Combustion Engines (FACE), was used. The fuel matrix design covers a wide range of cetane numbers (30 to 55), 90% distillation temperatures (270 to 340°C) and aromatics content (20 to 45%). The fuels were tested in a single-cylinder Caterpillar diesel engine equipped with a common-rail fuel injection system. The engine was operated at 900 rpm, a relative air/fuel ratio of 1.2 and 60% exhaust gas recirculation (EGR) for all fuels. The study was limited to a single fuel injection event starting between −30° and 0°CA with a rail pressure of 150 MPa. The brake mean effective pressure (BMEP) ranged from 3.2 to 3.6 bar depending on the fuel and fuel injection timing. The experimental results show that cetane number was the most important fuel property affecting PCCI combustion behavior. The low cetane number fuels had better BSFC due to more optimized combustion phasing and shorter combustion duration. They also had a longer ignition delay period available for premixing, which led to near-zero soot emissions. The two fuels with high cetane number and high 90% distillation temperature produced significant soot emissions when the start of combustion occurred before the end of fuel injection. The two fuels with high cetane number and high aromatics produced the highest brake specific NOx emissions, although the absolute values were below 0.1 g/kW-hr. Brake specific HC and CO emissions were primarily a function of the combustion phasing, but the low cetane number fuels had slightly higher HC and lower CO emissions than the high cetane number fuels.


2009 ◽  
Vol 2009.48 (0) ◽  
pp. 173-174
Author(s):  
Junichi MATSUOKA ◽  
Hiromi ISHTTANI ◽  
Kazuhiro HAYASHIDA ◽  
Hiroyuki YAMADA

Sign in / Sign up

Export Citation Format

Share Document