Optimization of Fuel Injection Parameters for Meeting Euro III Exhaust Emission Norms on a Heavy Duty Diesel Engine Using Taguchi Technique

Author(s):  
C. L Krishnan ◽  
Y. S Vinod ◽  
C. V Sudhindra
1990 ◽  
Author(s):  
Kazutoshi Mori ◽  
Hiroshi Kamikubo ◽  
Tohru Kawatani ◽  
Toshiji Obara ◽  
Izumi Fukano ◽  
...  

1994 ◽  
Author(s):  
Yoshihisa Yamaki ◽  
Kazutoshi Mori ◽  
Hiroshi Kamikubo ◽  
Susumu Kohketsu ◽  
Kohji Mori ◽  
...  

Author(s):  
Cosmin E. Dumitrescu ◽  
W. Stuart Neill ◽  
Hongsheng Guo ◽  
Vahid Hosseini ◽  
Wallace L. Chippior

An experimental study was performed to investigate fuel property effects on premixed charge compression ignition (PCCI) combustion in a heavy-duty diesel engine. A matrix of research diesel fuels designed by the Coordinating Research Council, referred to as the Fuels for Advanced Combustion Engines (FACE), was used. The fuel matrix design covers a wide range of cetane numbers (30 to 55), 90% distillation temperatures (270 to 340 °C) and aromatics content (20 to 45%). The fuels were tested in a single-cylinder Caterpillar diesel engine equipped with a common-rail fuel injection system. The engine was operated at 900 rpm, a relative air/fuel ratio of 1.2 and 60% exhaust gas recirculation (EGR) for all fuels. The study was limited to a single fuel injection event starting between −30° and 0 °CA after top dead center (aTDC) with a rail pressure of 150 MPa. The brake mean effective pressure (BMEP) ranged from 2.6 to 3.1 bar depending on the fuel and its injection timing. The experimental results show that cetane number was the most important fuel property affecting PCCI combustion behavior. The low cetane number fuels had better brake specific fuel consumption (BSFC) due to more optimized combustion phasing and shorter combustion duration. They also had a longer ignition delay period available for premixing, which led to near-zero soot emissions. The two fuels with high cetane number and high 90% distillation temperature produced significant soot emissions. The two fuels with high cetane number and high aromatics produced the highest brake specific NOx emissions, although the absolute values were below 0.1 g/kW-h. Brake specific HC and CO emissions were primarily a function of the combustion phasing, but the low cetane number fuels had slightly higher HC and lower CO emissions than the high cetane number fuels.


2009 ◽  
Vol 13 (3) ◽  
pp. 9-21 ◽  
Author(s):  
Ali Ranjbar ◽  
Kurosh Sedighi ◽  
Mousa Farhadi ◽  
Mohsen Pourfallah

Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The choosing various injection strategies is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. The purpose of this study is to investigate the effect of different injection angles on a heavy duty diesel engine and emission characteristics. The varieties of injection angle were simulated and the emissions like soot and NO is calculated. The comparison between the different injection strategies was also investigated. A combustion chamber for three injection strategies (injection direction with angles of ?=67.5, 70, and 72.5 degree) was simulated. The comparative study involving rate of heat release, in-cylinder temperature, in-cylinder pressure, NO and soot emissions were also reported for different injection strategies. The case of ?=70 is optimum because in this manner the emissions are lower in almost most of crank angle than two other cases and the in-cylinder pressure, which is a representation of engine power, is higher than in the case of ?=67.5 and just a little lower than in the case of ?=72.5.


Sign in / Sign up

Export Citation Format

Share Document