The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

1995 ◽  
Author(s):  
Edward A. Bass ◽  
Terry L. Ullman ◽  
Edwin C. Owens
Author(s):  
Tao Deng ◽  
Ke Zhao ◽  
Haoyuan Yu

In the process of sufficiently considering fuel economy of plug-in hybrid electric vehicle (PHEV), the working time of engine will be reduced accordingly. The increased frequency that the three-way catalytic converter (TWCC) works in abnormal operating temperature will lead to the increasing of emissions. This paper proposes the equivalent consumption minimization strategy (ECMS) to ensure the catalyst temperature of PHEV can work in highly efficient areas, and the influence of catalyst temperature on fuel economy and emissions is considered. The simulation results show that the fixed equivalent factor of ECMS has great limitations for the underutilized battery power and the poor fuel economy. In order to further reduce fuel consumption and keep the emission unchanged, an equivalent factor map based on initial state of charge (SOC) and vehicle mileage is established by the genetic algorithm. Furthermore, an Adaptive changing equivalent factor is achieved by using the following strategy of SOC trajectory. Ultimately, adaptive equivalent consumption minimization strategy (A-ECMS) considering catalyst temperature is proposed. The simulation results show that compared with ordinary ECMS, HC, CO, and NOX are reduced by 14.6%, 20.3%, and 25.8%, respectively, which effectively reduces emissions. But the fuel consumption is increased by only 2.3%. To show that the proposed method can be used in actual driving conditions, it is tested on the World Light Vehicle Test Procedure (WLTC).


2021 ◽  
Vol 292 ◽  
pp. 126040
Author(s):  
Xiaohua Zeng ◽  
Qifeng Qian ◽  
Hongxu Chen ◽  
Dafeng Song ◽  
Guanghan Li

2011 ◽  
Vol 121-126 ◽  
pp. 2710-2714
Author(s):  
Ling Cai ◽  
Xin Zhang

With the requirements for reducing emissions and improving fuel economy, it has been recognized that the electric, hybrid electric powered drive train technologies are the most promising solution to the problem of land transportation in the future. In this paper, the parameters of series hybrid electric vehicle (SHEV), including engine-motor, battery and transmission, are calculated and matched. Advisor software is chosen as the simulation platform, and the major four parameters are optimized in orthogonal method. The results show that the optimal method and the parameters can improve the fuel economy greatly.


2012 ◽  
Vol 546-547 ◽  
pp. 212-217
Author(s):  
Xu Dong Wang ◽  
Hai Xing Zhang ◽  
Shu Cai Yang ◽  
Yong Qin Zhou ◽  
Jin Fa Liu

Based on the configuration and working state analysis of the ISG hybrid electric cars, the torque distribution strategy of a hybrid system is designed to delineate the maximum and minimum work torque curves of the engine, achieve optimization of engine’s range so as to make sure the target torque of the engine and ISG motor, and finally through the calibrated driving characteristics MAP and battery SOC state to achieve the calculation of total vehicle torque demand. Taking the Hafei Saibao ISG hybrid car as a test model, the test of fuel economy and emissions carried out under specific conditions showed that using the torque distribution strategy has increased by 12.8 % of the ISG hybrid car fuel economy and improved emissions performance to some extent compared to the traditional Hafei Saibao cars.


Sign in / Sign up

Export Citation Format

Share Document