Magnesium Casting Alloys

2018 ◽  
Author(s):  
Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract Magnesium ZK61A is a heat treatable sand casting alloy offering higher strength properties for room-temperature applications than other magnesium casting alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Mg-67. Producer or source: The Dow Chemical Company.


2006 ◽  
Vol 503-504 ◽  
pp. 775-780 ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Yoshihito Kawamura

In order to make the effect of processing clear, AM50A magnesium casting alloys were extruded at various extrusion conditions such as extrusion temperature and extrusion ratio. The mechanical properties of AM50A alloy increased with decreasing extrusion temperature. Tensile yield strength and tensile strength of extruded AM50A alloy were 389MPa and 420MPa respectively when the extrusion temperature was 348K. The microstructure of the extruded magnesium alloy showed large grains stretched to the extrusion direction and fine recrystallized grains. Decreased extrusion temperature resulted in improved strength and decreased elongation with increasing of the degree of work hardens and extrusion force. When the extrusion ratio is high, improvement of strength is prevented by rycrystallization and it was observed as crystal orientation by XRD. The elongation of the extrusion increased with the recrystallization of grains. Every magnesium alloy extruded at low temperature has high strength.


2016 ◽  
Vol 127 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Mariusz Król ◽  
Tomasz Tański ◽  
Przemysław Snopiński ◽  
Błażej Tomiczek

2013 ◽  
Vol 197 ◽  
pp. 125-130
Author(s):  
Bartłomiej Dybowski ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

Magnesium alloys are widely used in aerospace and automotive industry due to their low density, good mechanical properties and good castability. The paper presents results of the castability tests and microstructural investigations on two unmodified magnesium casting alloys, Elektron 21 and QE22. Spirals for the castability test were poured from three temperatures: 755°C, 800°C and 835°C. Volume fraction of eutectic regions and grain size in both alloys were quantitatively evaluated. Castability increased with increasing pouring temperature. Quantity of eutectics and grain size did not show straight correlation with pouring temperature.


Sign in / Sign up

Export Citation Format

Share Document